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First-passage times for generalized heterogeneous telegrapher’s processes
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We consider two different fractional generalizations of the heterogeneous telegrapher’s process with and
without stochastic resetting. Both governing fractional heterogeneous telegrapher’s equations can be obtained
from the corresponding standard heterogeneous telegrapher’s equations by using the subordination approach.
The first-passage time problems are solved analytically for both models by finding the survival probabilities, the
first-passage time densities, and the mean first-passage times. We showed that for both cases there are optimal
resetting rates for which the mean first-passage times are minimal. The present work carries implications toward
our understanding of anomalous diffusion and random search in heterogeneous media.

DOI: 10.1103/PhysRevE.111.044105

I. INTRODUCTION

Diffusion processes in heterogeneous environments often
become anomalous, either due to the crowded environment
in which the particle is immersed [1–3], due to the fractal
structure [4] or the geometric constraints of the environment
[5], due to the variation of the local diffusion coefficient
in time [6] and space [7], or due to the external random
forces that act on the particle [8,9]. This means that the mean
squared displacement (MSD) of the particle has a power-law
dependence on time, 〈x2(t )〉 ∼ tβ . Depending on the anoma-
lous diffusion exponent β the corresponding process may
be subdiffusion for 0 < β < 1, normal diffusion for β = 1,
and superdiffusion for β > 1 [10]. There are many different
approaches to anomalous diffusion, such as continuous time
random walk models [11], fractional diffusion and Fokker-
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Planck equations [12,13], generalized (fractional) Langevin
equations [14,15], heterogeneous diffusion and Langevin
equations [16–19], time-dependent diffusivities [20], as well
as position and time-dependent drift [21], to name but a few.
Such equations are derived starting from some random pro-
cess, for example, either by introducing long-tailed waiting
times and jump lengths in the continuous time random walk
model [10], by introducing power-law correlations in time
in the driving force [14,15,22], or by using multiplicative
random driving noise [17], etc. All of these processes are
generalizations of the standard Brownian motion which can
be described by the standard diffusion equation for the prob-
ability density function (PDF) and by the stochastic Langevin
equation for the particle trajectory, and for which the MSD
has a linear dependence on time.

Another class of processes is the so-called telegrapher’s
processes [23,24] which are generalization of the standard
diffusion process in which the velocity of the particle is finite.
In such processes in the short time limit the particle per-
forms ballistic motion (〈x2(t )〉 ∼ t2) before it turns to normal
diffusion in the long time limit. The telegrapher’s process
can be modeled by using the telegrapher’s equation in which
additionally to the diffusion equation a second derivative of
the PDF in time occurs [25]

τ
∂2

∂t2
P0(x, t ) + ∂

∂t
P0(x, t ) = D

∂2

∂x2
P0(x, t ), (1)
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where τ is a time parameter, D is the diffusion coefficient, and
v = √

D/τ is the particle velocity. This telegrapher’s process
can also be modeled by the Langevin equation [26]

ẋ(t ) = vζ (t ), (2)

where v > 0 is the speed of the particle, while ζ (t ) is a
stationary dichotomic Markov process that switches between
two values ±1 with a mean rate ν, such that τ = 1

2ν
. In the

limit τ → 0 and v → ∞ such that v2τ fixed, the dichotomic
noise reduces to white noise.

In this paper, we will generalize the standard telegrapher’s
process to a process in a heterogeneous environment. One way
to derive the heterogeneous telegrapher’s process is by using
the Langevin equation with multiplicative dichotomic noise

ẋ(t ) = v(x)ζ (t ), (3)

where v(x) > 0 is a position-dependent speed, v(x) =√
D(x)/τ [27], D(x) is a position-dependent diffusion co-

efficient, and ζ (t ) is again a stationary dichotomic Markov
process, as in the standard telegrapher’s process. The corre-
sponding equation for the probability density function P1(x, t )
reads [27] (see also [28–30])

τ
∂2

∂t2
P1(x, t ) + ∂

∂t
P1(x, t )

= ∂

∂x

{√
D(x)

∂

∂x
[
√

D(x)P1(x, t )]

}
. (4)

Another way to define the heterogeneous telegrapher’s pro-
cess can be by using the generalized master equation for the
continuous time random walk [31]:

∂

∂t
P2(x, t ) = ∂

∂x

∫ t

0
K (t − t ′)D(x)

∂

∂x
P2(x, t ′) dt ′, (5)

when the memory kernel K (t ) is exponential, i.e., K (t ) =
1
τ

e−t/τ . Thus, one obtains the following heterogeneous tele-
grapher’s equation (HTE):

τ
∂2

∂t2
P2(x, t ) + ∂

∂t
P2(x, t ) = ∂

∂x

[
D(x)

∂

∂x
P2(x, t )

]
. (6)

Such an equation can also be derived for a current in a lossy
transmission inhomogeneous line [32].

Equations (4) and (6) can be cast in the general form

τ
∂2

∂t2
P(x, t ) + ∂

∂t
P(x, t )

= ∂

∂x

{
D(x)1−A/2 ∂

∂x
[D(x)A/2P(x, t )]

}
, (7)

which for A = 1 corresponds to the HTE (4), while for A = 0
corresponds to the HTE (6). For τ = 0 this equation re-
duces to the heterogeneous diffusion equation, which was
considered in [16,17,19,33–35] and depending on the noise
interpretation there are three different forms of the hetero-
geneous diffusion equation, such as Stratonovich for A = 1,
Hänggi-Klimontovich for A = 0, and Itô form for A = 2. The
diffusion coefficient used in this work is of power law form
D(x) = Dα|x|α , α < 2 [17]. For α = 0, it is the standard tele-
grapher’s equation.

Here, we note that another form of the heterogeneous
telegrapher’s equation can be derived from the persistent ran-
dom walk in an inhomogeneous medium [36], which has
the form of Eq. (4) but

√
D(x) would occur in front of the

first partial derivative with respect to x instead of multiply-
ing the PDF. Moreover, there are different generalizations of
the telegrapher’s process, such as the fractional telegrapher’s
processes [37–44], generalized discrete-time telegrapher’s
process [45,46], as well as the corresponding processes with
random velocities [47,48]. In this paper, we will consider
a fractional generalization of heterogeneous telegrapher’s
processes with position-dependent diffusion coefficient, gov-
erned by Eqs. (4) and (6). Such generalizations could be of
importance for a description of the run-and-tumble motion of
bacteria [49–54] and transient super-diffusion displayed by
the multipotent progenitor cells [55] and in an analysis of
generalization of different run-and-tumble motions [56–61].

This paper is organized as follows. In Sec. II, we derive
the fractional heterogeneous telegrapher’s equations (FHTE)
from the standard equations by using the subordination
approach. The first-passage properties of both models are ana-
lyzed in Sec. III. In Sec. IV, we consider both processes in the
presence of stochastic resetting. We find analytical results for
the mean first-passage time and show that there is an optimal
resetting rate in both models at which the mean first-passage
time is minimal. A summary is provided in Sec. V. In the
Appendixes, we provide detailed calculations for solving the
FHTEs, definitions, and some useful properties and relations
of the Fox H-function and the Mittag-Leffler functions.

II. DERIVATION OF THE FHTE

We use the subordination integral [13,62,63]

Ps(x, t ) =
∫ ∞

0
P(x, u)h(u, t ) du, (8)

where h(u, t ) is the subordination function for the μ-stable
Lévy subordinator, which in Laplace space reads

ĥ(u, s) = τμ−1sμ−1e−uτμ−1sμ

, 0 < μ < 1, (9)

to derive the corresponding equation for the fractional het-
erogeneous telegrapher’s process (FHTP). We can show that
the subordinated PDF is a solution to the equation (see Ap-
pendix A)

τμ ∂2μ

∂t2μ
Ps(x, t ) + ∂μ

∂tμ
Ps(x, t )

= ∂

∂x

{
D(x)1−A/2 ∂

∂x
[D(x)A/2Ps(x, t )]

}
. (10)

Therefore, for A = 1, we obtain the following time frac-
tional heterogeneous telegrapher’s equation [30]:

τμ ∂2μ

∂t2μ
Ps,1(x, t ) + ∂μ

∂tμ
Ps,1(x, t )

= ∂

∂x

{√
D(x)

∂

∂x
[
√
D(x)Ps,1(x, t )]

}
, (11)
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while for A = 0, it has the form

τμ ∂2μ

∂t2μ
Ps,2(x, t ) + ∂μ

∂tμ
Ps,2(x, t ) = ∂

∂x

[
D(x)

∂

∂x
Ps,2(x, t )

]
,

(12)

where D(x) = Dα|x|α , Dα = τ 1−μDα , and ∂ν

∂tν is the Caputo
fractional derivative of order ν, defined by [64]

∂ν

∂tν
f (t ) = 1

�(n − ν)

∫ t

0
(t − t ′)n−ν−1 dn

dt ′n f (t ′) dt ′, (13)

for n − 1 < ν < n, n ∈ N .1 This subordination approach was
used also to find the solution of different telegrapher’s equa-
tions [29,30,43]. We note that for α = 0 Eq. (11) reduces to
the one analyzed in [44].

As we mentioned above, the telegrapher’s process without
memory is a random motion with finite velocity. However, this
finite velocity property is lost in the fractional generalization.
This can be explained by the subordination integral (8) in
which the subordination function (9) has a support in (0,∞)
in u variable for any t > 0, which allows the particle to be at
any arbitrary distance at any t with a certain probability [65].

The corresponding mean squared displacement (MSD) for
Eq. (11) can be obtained from Eq. (A16). It is given by [30]

〈x2(t )〉 = �(1 + 2ρ)(Dατμ)ρ

ρ2ρ

×
(

t

τ

)2ρμ

Eρ
μ,2ρμ+1

(
−
[

t

τ

]μ)
, ρ = 2

2 − α
,

(14)

where E δ
α,β (z) is the three-parameter Mittag-Leffler function

(B11). From Eq. (14) we observe characteristic crossover
dynamics, see Eq. (B13),

〈x2(t )〉 ∼
{

t
4μ

2−α , t → 0
t

2μ

2−α , t → ∞ . (15)

The anomalous diffusion exponent in the short time limit
is twice the anomalous diffusion exponent in the long time
limit. Here, the specific combination between heterogeneity,
represented by the exponent α, and memory, represented by
the exponent μ, will determine the nature of the process,
see Fig. 1. Thus, if 0 <

2μ

2−α
< 1

2 , i.e., μ < 2−α
4 there is a

transition from subdiffusion with anomalous diffusion expo-
nent 0 <

4μ

2−α
< 1 to subdiffusion with anomalous diffusion

exponent 0 <
2μ

2−α
< 1

2 . If 2μ

2−α
= 1

2 , which means μ = 2−α
4 ,

there is a transition from normal diffusion to subdiffusion with
anomalous diffusion exponent 1/2. For 1

2 <
2μ

2−α
< 1, that is

2−α
4 < μ < 2−α

2 , there are characteristic crossover dynamics
from superdiffusion to subdiffusion. If 2μ

2−α
= 1 (μ = 2−α

2 )
there is a transition from ballistic motion to normal diffusion.

1The Laplace transform, f̂ (s) = ∫∞
0 e−st f (t ) dt , of the Caputo frac-

tional derivative reads [64]

L
[

∂ν

∂t ν
f (t )

]
= sν f̂ (s) −

n−1∑
k=0

sν−k−1

[
lim
t→0

dk

dtk
f (t )

]
.

FIG. 1. Characteristic crossover dynamics: interplay between
heterogeneity (α < 2) and memory (0 < μ < 1).

For 1 <
2μ

2−α
< 2, i.e., 2−α

2 < μ < 2 − α, one observes the
transition from hyperdiffusion (anomalous diffusion exponent
greater than 2) to superdiffusion, etc.

The MSD for Eq. (12) can be obtained from Eq. (A18). It
reads

〈x2(t )〉 = 22ρ�(ρ)�(3ρ/2)(Dατμ)ρ

ρ2ρ−1�(ρ/2)

×
(

t

τ

)2ρμ

Eρ
μ,2ρμ+1

(
−
[

t

τ

]μ)
. (16)

So, it has the same behavior as the MSD (14), only with
different prefactors.

III. FIRST-PASSAGE PROPERTIES

Here we will analyze the first-passage time when the pro-
cess is governed by Eqs. (11) and (12). It is defined as the time
required by the particle starting at x = x0 to reach a target
located at x = 0 for the first time. From Eq. (A5) for the
PDF, we write the corresponding backward equation for the
survival probability Q(x0, t ), which gives the probability that
the particle starting at x = x0 > 0 has not reached the target
located at x = 0 up to time t . Thus, we have

τμ ∂2μ

∂t2μ
Q(x0, t ) + ∂μ

∂tμ
Q(x0, t )

= D(x0)
∂2

∂x2
0

Q(x0, t ) +
(

1 − A

2

)
dD(x0)

dx0

∂

∂x
Q(x0, t ),

(17)

with initial conditions

Q(x0, 0) = 1,
∂Q(x0, t )

∂t

∣∣∣∣
t=0

= 0, (18)

and boundary conditions Q(0, t ) = 0 and Q(∞, t ) = 1. From
the survival probability we can calculate the first-passage time
density as

℘(t ) = − d

dt
Q(x0, t ), (19)
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i.e.,

℘̂(s) = 1 − sq̂(x0, s), (20)

in the Laplace space. The hat symbol stands for the Laplace
transform. Next, we analyze two cases, A = 1 and A = 0,
which are considered in this paper.

It is to be noted here that the choice of boundary conditions
augmenting Eq. (17) is not along the lines, for example, for
a run-and-tumble particle under Poissonian tumbling events
[66,67]. The reason for this difference is that while the mo-
tion of a run-and-tumble particle, described by P0(x, t ), can
be decomposed into the motion of individual components,
that is, P0(x, t ) = P+(x, t ) + P−(x, t ) [eventually leading to
Eq. (1)], no such decomposition exists for FHTEs owing
to the non-Markovian nature of tumblings. In other words,
the equivalence between studying the individual components
P±(x, t ) and their sum P0(x, t ) does not go beyond the realm of
Poissonian tumblings. As a result, the boundary conditions are
specified for the survival probability in the manner discussed
above [68].

A. First-passage time for FHTE 1

For the case A = 1, the backward equation for the survival
probability reads

τμ ∂2μQ1(x0, t )

∂t2μ
+ ∂μQ1(x0, t )

∂tμ

= Dαxα
0
∂2Q1(x0, t )

∂x2
0

+ Dαα

2
xα−1

0

∂Q1(x0, t )

∂x0
. (21)

By Laplace transform and by using the initial conditions (18),
we have

τμs2μ−1[sq̂1(x0, s) − 1] + sμ−1[sq̂(x0, s) − 1]

= Dαxα
0
∂2q̂1(x0, s)

∂x2
0

+ Dαα

2
xα−1

0

∂ q̂1(x0, s)

∂x0
, (22)

so that, rearranging terms

∂2q̂1(x0, s)

∂x2
0

+ α

2x0

∂ q̂1(x0, s)

∂x0
− sμ(τμsμ + 1)

Dαxα
0

q̂1(x0, s)

= − sμ−1(τμsμ + 1)

Dαxα
0

. (23)

The homogeneous equation

∂2q̂1,h(x0, s)

∂x2
0

+ α

2x0

∂ q̂1,h(x0, s)

∂x0

− sμ(τμsμ + 1)

Dα

x−α
0 q̂1,h(x0, s) = 0, (24)

corresponds to the Lommel equation (A14) with

β̄ = 2 − α

4
= 1

2ρ
, ᾱ = 2 − α

2
= 1

ρ
, ν̄ = 1/2,

a = ρ

√
sμ(τμsμ + 1)

Dα

= ρR(s). (25)

From here it follows that the solution to the homogeneous
equation is

q̂1,h(x0, s) = x1/2ρ

0 Z1/2
(
ıρR(s)x1/ρ

0

)
, (26)

where Zν̄ (ıy) = C1 Iν̄ (y) + C2 Kν̄ (y), and Iν̄ (y) and Kν̄ (y) are
the modified Bessel functions. Since at infinity (x0 → ∞)
q̂h(x0, s) should be finite and since Iν̄ (∞) → ∞ then we
should set C1 = 0. Therefore, the solution reads

q̂1,h(x0, s) = C2x1/2ρ

0 K1/2
(
ρR(s)x1/ρ

0

)
. (27)

It is easy to find that the particular solution of Eq. (23) is
q̂1,p(x0, s) = 1

s , and thus the full solution reads

q̂1(x0, s) = 1

s
+ q̂1,h(x0, s). (28)

From the property (A17) of the Bessel functions of the third
kind, and from the boundary condition q̂1(0, s) = 0, we cal-
culate the constant C2, and we obtain the solution

q̂1(x0, s) = 1

s

[
1 − exp

(−ρR(s)x1/ρ

0

)]
. (29)

From the survival probability we calculate the first-passage
time density (19), which is given by

℘̂1(s) = exp
(−ρR(s)x1/ρ

0

)
. (30)

In the long time limit s → 0, by using the Tauberian theorem
(see Appendix C), we find

1

s
℘̂1(s) ∼ 1

s

[
1 − ρR(s)x1/ρ

0

]
, (31)

where R(s) =
√

sμ(τμsμ+1)
Dα

∼ sμ/2√
Dα

. From here it follows

∫ t

0
℘1(t ′) dt ′ t→∞∼ 1 − ρ

x1/ρ

0√
Dα

t−μ/2

�(1 − μ/2)
. (32)

As a result,

℘1(t )
t→∞∼ ρ

(μ/2)x1/ρ

0√
Dα

t−μ/2−1

�(1 − μ/2)
∼ 1

t1+ μ

2
, (33)

which is a generalization of the first-passage time density for
the Brownian motion, ∼t−3/2, and is recovered for μ = 1 [69].

As a special case for τ = 0, we obtain that the first-passage
time density for the standard fractional heterogeneous diffu-
sion process obeys the scaling

℘1(t ) = L−1

[
exp

(
−ρ x1/ρ

0√
Dα

sμ/2

)]
= 1

t
fρ,μ

(
ρ x1/ρ

0√
Dαtμ

)
,

(34)

where

fα,μ(z) = H1,0
1,1

[
z

∣∣∣∣(0, μ/2)
(0, 1)

]
, (35)

and Hm,n
p,q (z) is the Fox H-function (B1), and we applied

relations (B8) and (B10). As a special case with μ = 1, the
first-passage time density reduces to

℘1(t ) = 1

t
H1,0

1,1

[
ρ x1/ρ

0√
Dαt

∣∣∣∣∣(0, 1/2)
(0, 1)

]
= ρ x1/ρ

0√
4πDαt3

e− ρ2x2/ρ
0

4Dα t ,

(36)
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which for ρ = 1 (α = 0) yields the Lévy-Smirnov distribu-
tion, see, for example, Ref. [70]

℘1(t ) = |x0|√
4πD0t3

e− x2
0

4D0t . (37)

B. First-passage time for FHTE 2

For the case A = 0, the backward equation for the survival
probability reads

τμ ∂2μQ2(x0, t )

∂t2μ
+ ∂μQ2(x0, t )

∂tμ
= Dαxα

0
∂2Q2(x0, t )

∂x2
0

+ Dααxα−1
0

∂Q2(x0, t )

∂x0
.

(38)

By Laplace transform, we have

τμs2μ−1[sq̂2(x0, s) − 1] + sμ−1[sq̂2(x0, s) − 1]

= Dαxα
0
∂2q̂2(x0, s)

∂x2
0

+ Dααxα−1
0

∂ q̂2(x0, s)

∂x0
, (39)

where we use the initial conditions (18). Therefore, we have
the following equation:

∂2q̂2(x0, s)

∂x2
0

+ α

x0

∂ q̂2(x0, s)

∂x0
− sμ(τμsμ + 1)

Dαxα
0

q̂2(x0, s)

= − sμ−1(τμsμ + 1)

Dαxα
0

. (40)

The homogeneous part of this equation is again a Lommel-
type equation (A14), while the particular solution equals 1/s.
Therefore, the final solution for the survival probability in
Laplace space is

q̂2(x0, s) = 1

s

[
1 − ρν̄

�(ν̄)

Rν̄ (s)

2ν̄−1
xν̄/ρ

0 Kν̄

(
ρR(s)x1/ρ

0

)]
, (41)

where ν̄ = 1−α
2−α

. Thus, the first-passage time density becomes

℘̂2(s) = ρν̄

�(ν̄)

Rν̄ (s)

2ν̄−1
xν̄/ρ

0 Kν̄

(
ρR(s)x1/ρ

0

)
. (42)

From here, for the long time limit we find

℘2(t ) ∼ ρ2ν̄x2ν̄/ρ

0

22ν̄Dν̄
α

(−μν̄)�(−ν̄)

�(ν̄)

t−μν̄−1

�(1 − μν̄)
∼ 1

t1+μ 1−α
2−α

.

(43)

This is another generalization of the first-passage time den-
sity for the Brownian motion, ∼t−3/2, which is recovered
for α = 0, μ = 1. Note that the temporal scaling of the first
passage time density ℘2(t ) reduces to (33) for α = 0.

For τ = 0, we obtain that the first-passage time density
obeys the scaling

℘2(t ) = 2

�(ν̄)
L−1

⎡
⎣( ρ x1/ρ

0√
4Dα

sμ/2

)ν̄

Kν̄

(
ρ x1/ρ

0√
Dα

sμ/2

)⎤⎦

= 1

t
gα,μ

(
ρ x1/ρ

0√
4Dαtμ

)
, (44)

where

gα,μ(z) = 1

2�(ν̄)
H2,0

1,2

[
z

∣∣∣∣ (0, μ/2)
(ν̄, 1/2), (0, 1/2)

]
. (45)

Here, we used relations (B6) and (B9), and the Laplace trans-
form formula (B10). For μ = 1 it becomes

℘2(t ) = 1

�(ν̄)t
H1,0

0,1

[
ρ2x2/ρ

0

4Dαt

∣∣∣∣∣(ν̄, 1)

]

= ρ2ν̄x2ν̄/ρ

0

�(ν̄)(4Dα )ν̄t ν̄+1
e− ρ2x2/ρ

0
4Dα t , (46)

where we applied the symmetry property of the Fox H-
function and relations (B4) and (B8). We note that for α = 0
(ρ = 1), both results (34) and (44) reduce to

℘1,2(t ) = 1

t
H1,0

1,1

[
x0√
Dαtμ

∣∣∣∣(0, μ/2)
(0, 1)

]
, (47)

as it should be. Note that the presence of heterogeneity in the
fractional telegrapher’s equation does not modify the fact that
the mean first passage time to x = 0 is still infinite.

IV. FHTP UNDER RESETTING

As it was already mentioned, the MFPT of the FHTP di-
verges. Here, we will show how with stochastic resetting of
the particle to its starting point x0 the MFPT becomes finite
and can be optimized with respect to the resetting rate.

Thus, we consider both FHTPs in the presence of stochas-
tic resetting. For Poissonian resetting, we use the renewal
equation for the PDF [71–73], i.e.,

Pr (x, t ) = e−rt P(x, t ) +
∫ t

0
re−rt ′

P(x, t ′) dt ′. (48)

The first term from the right-hand side of the equation gives
the probability that there was not a resetting event up to time t ,
while in the second term the probability that there were many
resetting events up to time t . From the Laplace transform of
the renewal equation, one finds

P̂r (x, s) = s + r

s
P̂(x, s + r), (49)

from where in the long time limit the nonequilibrium station-
ary state (NESS) is obtained, i.e.,

Ps(x) = lim
t→∞ Pr (x, t ) = lim

s→0
sP̂r (x, s) = rP̂(x, r). (50)

From the renewal equation, one can also find the survival
probability Qr (x0, t ) in the presence of resetting if one knows
the survival probability Q(x0, t ) in the absence of resetting. In
Laplace space it reads [35,74,75]

q̂r (x0, s) = q̂(x0, s + r)

1 − rq̂(x0, s + r)
. (51)

From here, we find the MFPT

〈Tr〉 = −
∫ ∞

0
t
∂Qr (x0, t )

∂t
dt = q̂r (x0, s = 0). (52)

Next, we will analyze the MFPT for both cases of the frac-
tional heterogeneous telegrapher’s process.
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(a)

(b)

FIG. 2. MFPT (54) for (a) τ = 1 and (b) τ = 0. We set x0 = 1,
α = 1/2, μ = 1 (blue line), μ = 3/4 (orange line), and μ = 1/2
(green line).

A. FHTE 1 under resetting

Therefore, for the FHTE 1, we find

q̂r,1(x0, s) = q̂1(x0, s + r)

1 − rq̂1(x0, s + r)

= 1 − exp
(−ρR(s + r)x1/ρ

0

)
s + r exp

(−ρR(s + r)x1/ρ

0

) , (53)

from where it follows

〈Tr〉1 = 1

r

[
exp
(
ρR(r)x1/ρ

0

)− 1
]
. (54)

For all α < 2 the MFPT is infinite for r = 0 and r = ∞, and
thus there is an optimal resetting rate r∗ for which the MFPT
has its minimum. This optimal resetting rate can be obtained
from

∂

∂r
〈T (x0)〉1

∣∣∣∣
r=r∗

= 0. (55)

Thus, we obtain

1 − e−ξ = r∗
dξ

dr∗
, ξ = R(r∗) x1/ρ

0 . (56)

A graphical representation of the MFPT (54) is given in
Fig. 2. From the figures, one can conclude that for r = 1,
keeping α (or equivalently ρ) fixed, all curves intersect at

0.001 1 1000

1

10

100

1000

104

r

M
FP
T

FIG. 3. MFPT (54) for τ = 0 (blue line), τ = 0.1 (orange line),
τ = 1 (green line), and τ = 10 (red line). We set x0 = 1, α = 1/2,
and μ = 1/2.

r = 1, i.e., the MFPTs are the same. The minima of MFPT
monotonically increase with decreasing μ for τ = 1, while an
opposite behavior is observed for τ = 0. The optimal resetting
rate r∗ for the telegrapher’s process increases with the de-
crease of μ, while for the diffusion process, it is opposite—the
optimal resetting rate increases with the increase of μ.

In Fig. 3, it is observed that the optimal resetting rate is
decreasing with increasing τ , while the minima of the MFPT
increase with an increase of τ .

B. FHTE 2 under resetting

For the FHTE 2, we have

q̂r,2(x0, s) = q̂2(x0, s + r)

1 − rq̂2(x0, s + r)

=
1 − ρν̄

�(ν̄)
Rν̄ (s+r)

2ν̄−1 xν̄/ρ

0 Kν̄

(
ρR(s + r)x1/ρ

0

)
s + r ρν̄

�(ν̄)
Rν̄ (s+r)

2ν̄−1 xν̄/ρ

0 Kν̄

(
ρR(s + r)x1/ρ

0

) , (57)

and thus

〈Tr〉2 = 1

r

[
2ν̄−1�(ν̄)

ρν̄Rν̄ (r)xν̄/ρ

0 Kν̄

(
ρR(r)x1/ρ

0

) − 1

]
. (58)

From here, one concludes that in order the MFPT is finite
then ν̄ = 1−α

2−α
> 0, i.e., α < 1. Since this condition is always

fulfilled, the MFPT is always finite. For τ = 0 we recover the
result obtained in Ref. [35].

A graphical representation of the MFPT (58) is given in
Fig 4. From the figure, one can conclude the same behavior of
the MFPT with the resetting rate r, as in the previous case. The
MFPTs are the same at r = 1 for fixed α (or equivalently ρ),
the minima of MFPT monotonically increase with decreasing
μ for τ = 1, while an opposite behavior for τ = 0 is observed.
The optimal resetting rate r∗ for the telegrapher’s process
increases with the decrease of μ, while for the diffusion
process, the optimal resetting rate increases with the increase
of μ.
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(a)

(b)

FIG. 4. MFPT (58) for (a) τ = 1 and (b) τ = 0. We set x0 = 1,
α = 1/2, μ = 1 (blue line), μ = 3/4 (orange line), and μ = 1/2
(green line).

In Fig. 5, it is also observed, as in the previous case, that
the optimal resetting rate decreases with increasing τ , while
the minima of the MFPT increase with the increase of τ .

A graphical representation of the comparison between MF-
PTs (54) and (58) is given in Fig. 6. One can conclude that
〈Tr〉1<〈Tr〉2.

FIG. 5. MFPT (58) for τ = 0 (blue line), τ = 0.1 (orange line),
τ = 1 (green line), and τ = 10 (red line). We set x0 = 1, α = 1/2
and μ = 1/2.

FIG. 6. Comparison between MFPTs (54) (blue lines) and (58)
(red lines) for τ = 1 (dashed lines) and τ = 0 (solid lines). We set
x0 = 1, α = 1/2, and μ = 1/2.

V. SUMMARY

In this paper, we considered two different forms of FHTEs
and found their solutions. The corresponding MSDs share
the same behavior in time and are presented through the
three-parameter Mittag-Leffler function. Both models show
anomalous diffusive behavior where the anomalous diffusion
exponent in the short time limit is twice the anomalous dif-
fusion exponent in the long time limit, which is a signature
of characteristic crossover dynamics. The first passage times
in the long time limit have different temporal power-law be-
havior. We also showed that in the presence of stochastic
resetting, the MFPTs for both models become finite and that
there are optimal resetting rates at which the MFPTs are
minimal. The dependence of the optimal reset rate on the
parameters α and μ are qualitatively the same for both models,
while for τ = 0 the behavior is the opposite.

The influence of different resetting mechanisms on the
search strategy, such as time-dependent [76], noninstan-
taneous [77,78], partial resetting [79,80], resetting in an
interval [81,82], discrete space-time resetting models [83],
and stochastic resetting to multiple [84] and random posi-
tions [85], could be of interest for future research. The more
generalized model of the heterogeneous telegrapher’s equa-
tion with general memory kernel [38] in the presence of
resetting, as well as with time-dependent diffusion coefficient
as in the scaled Brownian motion [73], we leave for future
investigation.
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APPENDIX A: FROM STANDARD HTE TO FHTE
AND GENERAL SOLUTION

By Laplace transform to (7), we have

(τ s + 1)[sP̂(x, s) − δ(x)]

= ∂

∂x

{
D(x)1−A/2 ∂

∂x
[D(x)A/2P̂(x, s)]

}
. (A1)

We introduce the substitution s → τμ−1sμ to obtain

(τμsμ + 1)[τμ−1sμP̂(x, τμ−1sμ) − δ(x)]

= ∂

∂x

{
D(x)1−A/2 ∂

∂x
[D(x)A/2P̂(x, τμ−1sμ)]

}
. (A2)

We define a new PDF as follows:

P̂s(x, s) = τμ−1sμ−1P̂(x, τμ−1sμ), (A3)

from where it follows

sμ−1(τμsμ + 1)[sP̂s(x, s) − δ(x)]

= ∂

∂x

{
D(x)1−A/2 ∂

∂x
[D(x)A/2P̂s(x, s)]

}
, (A4)

where D(x) = τ 1−μD(x). The inverse Laplace transform of
(A4) yields the following FHTE:

τμ ∂2μ

∂t2μ
Ps(x, t ) + ∂μ

∂tμ
Ps(x, t )

= ∂

∂x

{
D(x)1−A/2 ∂

∂x
[D(x)A/2Ps(x, t )]

}
. (A5)

From Eq. (A3), we have

P̂s(x, s) =
∫ ∞

0
τμ−1sμ−1e−uτμ−1sμ

P(x, u) du. (A6)

The inverse Laplace transform yields

Ps(x, t ) =
∫ ∞

0
P(x, u)h(u, t ) du, (A7)

with

h(u, t ) = L−1[τμ−1sμ−1e−uτμ−1sμ

]

= 1

τ (t/τ )μ
H1,0

1,1

[
u/τ

(t/τ )μ

∣∣∣∣(1 − μ,μ)
(0, 1)

]

= t/τ

μu(u/τ )1/μ
Lμ

(
t/τ

(u/τ )1/μ

)
. (A8)

Here, Hm,n
p,q (z) is the Fox H-function (B1) and Lα (z) is the

Lα (z) is the one-sided Lévy stable PDF (B7). This procedure
is known as the subordination approach, i.e., the integral (A7)
is called subordination integral, while the function h(u, t )
(A8)—subordination function.

Let us now solve Eq. (A5) for D(x) = Dα|x|α . Thus, we
have

sμ−1(τμsμ + 1)[sP̂s(x, s) − δ(x)]

= Dα

∂

∂x

{
|x| (2−A)α

2
∂

∂x

[
|x| Aα

2 P̂s(x, s)
]}

. (A9)

Performing differentiation with respect to x, one finds

sP̂s(x, s) − δ(x)

= Dα

sμ−1(τμsμ + 1)

[
Aαδ(x)|x|α−1P̂s(x, s)

+ (2θ (x) − 1)
(A + 2)α

2
|x|α−1 ∂

∂x
P̂s(x, s)

+ A(α − 1)α

2
|x|α−2P̂s(x, s) + |x|α ∂2

∂x2
P̂s(x, s)

]
.

(A10)

Taking into account that the Fokker-Planck equation is sym-
metrical with respect to inversion x → −x, we can consider
the solution for the non-negative x, when x = |x| and then
extend it symmetrically for the entire x axis. Therefore, using
the variable change P̂(|x|, s) = C(s) f̂ (|x|, s) = C(s) f̂ (y, s),
where C(s) is a function of s, we transform Eq. (A10) to

s f̂ (y, s) − δ(x)

C(s)

= Dα

sμ−1(τμsμ + 1)

A(α − 1)α

2
yα−2 f̂ (y, s)

+ Dα

sμ−1(τμsμ + 1)
Aαyα−1δ(x) f̂ (y, s)

+ Dα

sμ−1(τμsμ + 1)

(A + 2)α

2
yα−1 ∂

∂y
f̂ (y, s)

+ 2
Dα

sμ−1(τμsμ + 1)
yαδ(x)

∂

∂y
f̂ (y, s)

+ Dα

sμ−1(τμsμ + 1)
yα ∂2

∂y2
f̂ (y, s). (A11)

Separating terms with δ(x), we obtain two independent equa-
tions:

∂2

∂y2
f̂ (y, s) + (A + 2)α/2

y

∂

∂y
f̂ (y, s)

+
[
− sμ(τμsμ + 1)/Dα

yα
+ A(α − 1)α/2

y2

]
f̂ (y, s) = 0,

(A12)

− 1

C(s)
= Dα

sμ−1(τμsμ + 1)

×
[

Aαyα−1 f̂ (y, s) + 2yα ∂

∂y
f̂ (y, s)

]∣∣∣∣
y=0

. (A13)

Equation (A12) is the Lommel-type differential equation:

z′′(y) + 1 − 2β̄

y
z′(y)

+
[(

aᾱyᾱ−1
)2 + β̄2 − ν̄2ᾱ2

y2

]
z(y) = 0, (A14)
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where a, ν̄, ᾱ, and β̄ are parameters, while primes for z denote
derivatives with respect to y. The solution of Eq. (A14) is

z(y) = yβ̄Zν̄

(
ıayᾱ

)
,

where Zν̄ (y) = C1Jν̄ (y) + C2Yν̄ (y), and Jν̄ (y) and Yν̄ (y) are
the Bessel functions of first and second kind. The boundary
conditions at infinity are equal to zero. Therefore, the solution
reads

z(y) = yβ̄Kν̄ (ayᾱ ),

where Kν̄ (y) is the modified Bessel function (of the third
kind). Here, we also find the relations

a= 2

2 − α

√
sμ(τμsμ + 1)

Dα

, ᾱ= 2 − α

2
, β̄ = 2 − (A + 2)α

4
,

ν̄ = [2 − (A + 2)α]2 − 8A(α − 1)α

8(2 − α)
. (A15)

Inserting the obtained solution f̂ (y, s) in Eq. (A13), we find
C(s).

1. Case with A = 1

For this case, we have β̄ = 2−3α
4 and ν̄ = 1/2, i.e.,

P̂s(x, s) =
( Dα

sμ−1(τμsμ + 1)

)−3/4 s−1/4

√
(2 − α)π

× |x| 2−3α
4 K 1

2

⎛
⎝ 2

2 − α

√
sμ(τμsμ + 1)

Dα

|x| 2−α
2

⎞
⎠

= |x|−α/2

2
s−1

√
sμ(τμsμ + 1)

Dα

× exp

⎛
⎝− 2

2 − α

√
sμ(τμsμ + 1)

Dα

|x|(2−α)/2

⎞
⎠,

(A16)

where we use the relation between the modified Bessel func-
tion (of the third kind) and exponential function,

K1/2(z) =
√

π

2z
e−z. (A17)

2. Case with A = 0

For this case, we have β̄ = 1−α
2 and ν̄ = 1−α

2−α
, which yields

P̂s(x, s) =
( Dα

sμ−1(τμsμ + 1)

)−(3−α)/[2(2−α)]

× s−(1−α)/[2(2−α)]

�
(

1
2−α

)
(2 − α)1/(2−α)

× |x| 1−α
2 K 1−α

2−α

⎛
⎝ 2

2 − α

√
sμ(τμsμ + 1)

Dα

|x| 2−α
2

⎞
⎠.

(A18)

APPENDIX B: FOX H-FUNCTION AND MITTAG-LEFFLER
FUNCTIONS

The Fox H-function is defined by means of the following
Mellin-Barnes integral [86–88]:

Hm,n
p,q (z) = Hm,n

p,q

[
z

∣∣∣∣(a1, A1), ..., (ap, Ap)
(b1, B1), ..., (bq, Bq )

]

= Hm,n
p,q

[
z

∣∣∣∣(ap, Ap)
(bq, Bq )

]
= 1

2π ı

∫
�

θ (s)z−s ds, (B1)

where

θ (s) =
∏m

j=1 �(b j + Bjs)
∏n

j=1 �(1 − a j − Ajs)∏q
j=m+1 �(1 − b j − Bjs)

∏p
j=n+1 �(a j + Ajs)

,

(B2)

0 � n � p, 1 � m � q, ai, b j ∈ C, Ai, Bj ∈ R+, i = 1, ..., p,
j = 1, ..., q. Contour integration � starts at c − ı∞ and fin-
ishes at c + ı∞, separating the poles of the function �(bj +
Bjs), j = 1, ..., m with those of the function �(1 − ai − Ais),
i = 1, ..., n.

(Symmetric property) The Fox H-function is symmetric
in the following pairs (a1, A1), . . . , (an, An), as well as in
the pairs (an+1, An+1), . . . , (ap, Ap). The Fox H-function is
symmetric also in the pairs (b1, B1), . . . , (bm, Bm), as well as
in the pairs (bm+1, Bm+1), . . . , (bq, Bq ).

The following reduction formulas for the Fox H-function
for n � 1, q > m, are valid:

Hm,n
p,q

[
z

∣∣∣∣ (a1, A1), ..., (ap, Ap)
(b1, B1), ..., (bq−1, Bq−1), (a1, A1)

]

= Hm,n−1
p−1,q−1

[
z

∣∣∣∣ (a2, A2), ..., (ap, Ap)
(b1, B1), ..., (bq−1, Bq−1)

]
, (B3)

Hm,n
p,q

[
z

∣∣∣∣(a1, A1), ..., (ap−1, Ap−1), (b1, B1)
(b1, B1), ..., (bq, Bq )

]

= Hm−1,n
p−1,q−1

[
z

∣∣∣∣(a1, A1), ..., (ap−1, Ap−1)
(b2, B2), ..., (bq, Bq )

]
. (B4)

Moreover, for δ > 0, the following formula holds true:

Hm,n
p,q

[
zδ

∣∣∣∣(ap, Ap)
(bq, Bq )

]
= 1

δ
Hm,n

p,q

[
z

∣∣∣∣(ap, Ap/δ)
(bq, Bq/δ)

]
, (B5)

as well as

zσ Hm,n
p,q

[
z

∣∣∣∣(ap, Ap)
(bq, Bq )

]
= Hm,n

p,q

[
z

∣∣∣∣(ap + σAp, Ap)
(bq + σBq, Bq )

]
. (B6)

The one-sided Levy stable PDF Lα (z) is defined by the
following Laplace transform [88]:

L[Lα (t )] = e−sα

. (B7)

The Fox H-function is related to the exponential as follows
[88]:

H1,0
0,1

[
z

∣∣∣∣(α, 1)

]
= zαe−z, (B8)

and with the modified Bessel function (of the third kind) as
[88]

H2,0
0,2

[
z

∣∣∣∣( ν
2 , 1), (− ν

2 , 1)

]
= 2Kν (2z1/2). (B9)
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The inverse Laplace transform of the Fox H-function reads
[88]

L−1

[
s−ρHm,n

p,q

[
asσ

∣∣∣∣(ap, Ap)
(bq, Bq )

]]

= tρ−1Hm,n
p+1,q

[
a

tσ

∣∣∣∣(ap, Ap), (ρ, σ )
(bq, Bq )

]
, (B10)

where ρ, a, s ∈ C, �(s) > 0, σ > 0, �(ρ) +
σ max1�i�n[ 1

Ai
− �(ai )

Ai
] > 0, | arg(a)| < πθ

1 , θ = α − σ .
The three-parameter Mittag-Leffler function is defined by

[89]

Eγ

α,β (z) =
∞∑

k=0

(γ )k

�(αk + β )

zk

k!
, (B11)

with β, γ , z ∈ C, �(α) > 0, (γ )k = �(γ+k)
�(γ ) is the Pochham-

mer symbol. For γ = 1, it reduces to the two-parameter
Mittag-Leffler function, Eα,β (z) = Eγ

α,β (z) and for β = γ =
1—to the one-parameter Mittag-Leffler function, Eα (z) =
Eα,1(z) = E1

α,1(z).
The Laplace transform of the three-parameter Mittag-

Leffler function reads [89]

L
[
tβ−1Eγ

α,β
(±λtα )

] = sαγ−β

(sα ∓ λ)γ
, (B12)

where |λ/sα| < 1.
The three-parameter Mittag-Leffler function has the fol-

lowing asymptotic behavior [90]:

Eγ

α,β (−λtα ) ∼ 1

λγ

t−αγ

�(β − αγ )
, t  1. (B13)

APPENDIX C: TAUBERIAN THEOREMS

The Tauberian theorem states that if the asymptotic behav-
ior of a given function r(t ) for t → ∞ is given by [91]

r(t ) ∼ t−α, α > 0, (C1)

then, the corresponding Laplace pair r̂(s) = L[r(t )] has the
behavior

r̂(s) ∼ �(1 − α)sα−1, (C2)

for s → 0. The theorem also works in the opposite direction,
ensuring that r(t ) is the non-negative and monotone function
at infinity.

The Tauberian theorem can be formulated in the form
of the Hardy-Littlewood theorem, which states that, if the
Laplace-Stieltjes transform of a given non-decreasing func-
tion F with F (0) = 0, defined by Stieltjes integral

ω(s) =
∫ ∞

0
e−st dF (t ), (C3)

has asymptotic behavior

ω(s) ∼ Cs−ν, s → ∞ (s → 0), (C4)

where ν � 0 and C are real numbers, then the function F has
asymptotic behavior

F (t ) ∼ C

�(ν + 1)
tν, t → 0 (t → ∞). (C5)
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