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Statistical properties of stochastic functionals under general resetting
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We derive the characteristic function of stochastic functionals of a random walk whose position is reset to
the origin at random times drawn from a general probability distribution. We analyze the long-time behavior
and obtain the temporal scaling of the first two moments of any stochastic functional of the random walk when
the resetting time distribution exhibits a power-law tail. When the resetting times probability density function
has finite moments, the probability density of any functional converges to a delta function centered at its mean,
indicating an ergodic phase. We explicitly examine the case of the half-occupation time and derive the ergodicity
breaking parameter, the first two moments, and the limiting distribution when the resetting time distribution
follows a power-law tail, for both Brownian and subdiffusive random walks. We characterize the three different
shapes of the limiting distribution as a function of the exponent of the resetting distribution. Our theoretical
findings are supported by Monte Carlo simulations, which show excellent agreement with the analytical results.
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I. INTRODUCTION

In recent years, stochastic resetting has emerged as a pow-
erful concept in the study of random processes, attracting
growing attention across various disciplines. This mechanism,
which intermittently interrupts the evolution of a stochastic
process by returning it to a predefined state, has been shown
to significantly alter fundamental properties of the underlying
random walk. Originally proposed in the context of Brown-
ian motion [1,2] stochastic resetting has since been extended
to a wide range of processes, including Lévy flights [3–5],
run-and-tumble dynamics [6], and subdiffusive motion [7].
Notably, resetting can lead to the formation of a nonequi-
librium stationary state and optimize search strategies by
minimizing the mean first passage time under certain condi-
tions. This effect is due to the fact that stochastic resetting
forces the walker to revisit a point or a region [8]. A similar
effect is observed when the walker moves in a heterogeneous
media in which the diffusion coefficient depends on space as
power law [9] or when the walker is under the effect of a
force field [10,11], the system reaches a steady state and the
mean first passage is finite. Most of the studies deal with a
Poissonian resetting process, i.e., when the reset times are dis-
tributed according to an exponential distribution. Only a few
studies deal with reset times distributed according to general
distributions. If this distribution decays as a power-law, then
the existence of a steady state and a finite first passage time
depend on the characteristic exponent of the distribution and
the properties of the underlying random walk [12–16].

On the other hand, in the last decades stochastic functionals
have received much attention. The prototypical example of
stochastic functional is the Brownian functional, defined as
the time-integral over the trajectory of a walker when it is
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Brownian. In 1949 [17] Kac realized that the statistical prop-
erties of one-dimensional Brownian functionals can be studied
by celebrated Feynman-Kac formula. Since then Brownian
functionals have found numerous applications in diverse fields
ranging from probability theory [18,19] and finance [20] to
disordered systems and mesoscopic physics [21] and com-
puter science [22]. More recently, the case of subdiffusive
walkers has been considered as well [23,24]. Among the
most widely studied functionals are the occupation time in
an interval and the half-occupation time, which have diverse
applications in physics, mathematics, and related fields [25].

Another problem involving resetting consists of studying
the statistical properties of stochastic functionals of a random
walker when its position is forced to start anew at random
times. Most existing studies regarding stochastic functionals
under resetting consider it as Poissonian process [26,27], and
less attention is paid when the resetting times are distributed
according to general probability density functions. However,
we have recently studied the statistical properties of the occu-
pation time in an interval for a Brownian particle under reset
times sampled from a power-law probability density function
(PDF) [28]. Despite this progress, a comprehensive theory de-
scribing the behavior of general stochastic functionals under
arbitrary resetting schemes is still lacking.

In this work, we explore how the statistical properties of
stochastic functionals are affected when the position of the un-
derlying random walk is reset to the origin after random times
sampled from a general PDF. Since the resetting mechanism is
a renewal process, we are able to find an equation that relates
the characteristic function of the functional under resetting
in terms of two expressions: the resetting times PDF and the
characteristic function of the functional without resetting. We
find that when the moments of the resetting PDF are finite, the
PDF of the functional converges to a delta function centered
at the mean value in the long-time limit. This is the ergodic
case.
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On the other hand, when the resetting times PDF has
diverging moments, the characteristic function must be com-
puted on a case-by-case basis, specifying each functional
individually. We further explore the temporal behavior of the
first two moments of the functional, which is also useful
to study the ergodic properties. We particularize our general
results to the half occupation time and obtain its limiting PDF
when the resetting times PDF has a power-law tail. More
specifically, we obtain the limiting PDF for both normal and
subdiffusive underlying random walks.

The paper is structured as follows: In Sec. II we introduce
the definition of stochastic functional and its characteristic
function (or moment-generating function). In Sec. III we de-
rive the characteristic function of a functional under general
resetting, obtain the expression for the first two moments, and
illustrate how to analyze the ergodic properties. In Sec. IV we
prove general results for any stochastic functional. In particu-
lar, we show that any stochastic functional becomes ergodic,
i.e., deterministic in the long-time limit, when the resetting
PDF has finite moments. Likewise, we derive the long-time
scaling temporal dependence for the first two moments of any
functional when the resetting PDF decays as a power law. In
Sec. V we apply our results to the particular case of the half
occupation time. We conclude in Sec. VI

II. STOCHASTIC FUNCTIONALS

A stochastic functional is defined as the integral up to the
measurement time t of a positive function U [x(τ )] of the
trajectory {x(τ ); 0 � τ � t, x(0) = x0} of a random walker.
The stochastic functional is then given by

Z (t |x0) =
∫ t

0
U [x(τ )]dτ, (1)

where U (x) is some prescribed arbitrary function. For ex-
ample, if U (x) = θ (x) (θ (x) is the Heaviside function) then
Z (t |x0) is the half occupation time, this is, the time spent
by the random walker in the positive half-space. Since x(t )
is a stochastic process, Z (t |x0) is also a stochastic process.
For each realization of the walker’s path, the quantity Z (t |x0)
has a different value and one is interested in the PDF of
Z (t |x0), say P(Z, t |x0). P(Z, t |x0) is then the probability that
the functional takes the value Z at time t given that the walker
was initially at x = x0. Let Q(p, t |x0) be the characteristic
function (or moment-generating function) of Z (t |x0), which
can be expressed as the Laplace transform with respect to Z ,
this is,

Q(p, t |x0) = LZ→p[P(Z, t |x0)] =
∫ ∞

0
e−pZ P(Z, t |x0)dZ

= 〈e−pZ (t |x0 )〉 = 〈
e−p

∫ t
0 U [x(τ )]dτ

〉
, (2)

which satisfies a backward master equation known as the
Feynman-Kac equation [17,18]. Expanding the exponential in
(2) as a power series, we find

Q(p, t |x0) =
〈 ∞∑

n=0

(−p)n

n!
Z (t |x0)n

〉
=

∞∑
n=0

(−p)n

n!
〈Z (t |x0)n〉.

(3)

Introducing another Laplace transform conjugate to time as

Q̃(p, s|x0) = Lt→s[Q(p, t |x0)] =
∫ ∞

0
dt e−st Q(p, t |x0), (4)

the moments of Z (t |x0) can be obtained from the derivatives
of Q̃(p, s|x0) in a systematic manner. To do this, we first define
the Laplace transform of the moments

〈Z̃ (s|x0)n〉 ≡ Lt→s[〈Z (t |x0)n〉]

=
∫ ∞

0
dte−st

∫ ∞

0
Z (t )nP(Z, t |x0)dZ. (5)

Making use of Eq. (2), it is straightforward to show that the
moments are represented in terms of the generating function
in the following way:

〈Z̃ (s|x0)n〉 = (−1)n ∂nQ̃(p, s|x0)

∂ pn

∣∣∣∣
p=0

. (6)

This equation will be used later to compute the moments of
the functional once the characteristic function is known.

III. CHARACTERISTIC FUNCTION UNDER RESETTING

The goal is to compute the characteristic function of a
stochastic functional Z (t |x0)r when the underlying random
walk is subjected to resetting the position to x = x0. The
random walk process under resetting is as follows. The walker
starts moving at x = x0, a positive resetting time τ1 is drawn
from the PDF ϕ(τ ) and the walker performs a free random
walk in the interval of time (0, τ1), finally reaching some
random position. Then the walker’s position is reset instan-
taneously to x = x0, and the process is then renewed, namely,
a second resetting time τ2 is drawn also from ϕ(τ ), etc. When
this process is continued we get the sequence of independent
identically distributed random variables, {τ1, τ2, ...}, i.e., the
waiting times between resetting events, which are needed to
construct the path of the particle. Consider now that there are
N resets in the time interval (0, t ). Thus

t =
N∑

l=1

τl + B, (7)

where B is the time since the last reset (the backward re-
currence time). In consequence, the integral in Eq. (1) can
be expressed as the sum of the contributions over the inter-
resetting periods

Z (t |x0)r =
∫ τ1

0
U [x(t ′)]dt ′ +

∫ τ1+τ2

τ1

U [x(t ′)]dt ′ + · · ·

+
∫ τ1+...+τN−1+τN

τ1+...+τN−1

U [x(t ′)]dt ′ +
∫ t

τ1+...+τN

U [x(t ′)]dt ′

=
N∑

l=1

∫ τl +δl

δl

U [x(t ′)]dt ′ +
∫ t

δN+1

U [x(t ′)]dt ′, (8)

where δl = ∑l−1
j=0 τ j and τ0 = 0. Since ϕ(τ ) is the PDF of

waiting times between two consecutive resets,the probability
of no reset until time τ is

ϕ∗(τ ) = 1 −
∫ τ

0
ϕ(τ ′)dτ ′ =

∫ ∞

τ

ϕ(τ ′)dτ ′.

044123-2



STATISTICAL PROPERTIES OF STOCHASTIC … PHYSICAL REVIEW E 112, 044123 (2025)

Because of the additive form of Z (t |x0)r , it is clear that its
characteristic function Q(p, t |x0)r can be decomposed, when
conditioned on these N resettings, into a product of generating
functions involving only free random walk between resettings.
To write the full Q(p, t |x0)r , we then have to sum over all pos-
sible number of resets and reset times. Then, the characteristic
function Q(p, t |x0)r of the functional Z (t |x0)r , can be written
in the form of a renewal equation [26]

Q(p, t |x0)r =
∞∑

N=0

∫ t

0
F (p, τ1)dτ1

∫ t

0
F (p, τ2)dτ2

· · ·
∫ t

0
F (p, τN )dτN

×
∫ t

0
F ∗(p, B)δ

(
t −

N∑
l=1

τl − B

)
dB, (9)

where Q(p, t |x0)0 is the characteristic function of Z when
the underlying random walk is free of resetting. We have
also defined F (p, τl ) = ϕ(τl )Q(p, τl |x0)0 for l = 1, .., N and
F ∗(p, B) = ϕ∗(B)Q(p, B|x0)0. The product of the N integrals
of F (p, τl ) are the contributions to Q(p, t |x0)r from the N
resets in (0, t ) and the integral of F ∗(p, τl ) is the contribu-
tion when no reset occurs during the backward time B. It is
interesting to emphasize that B does not have the same PDF as
the waiting times between resets {τ1, ..., τN }, except when the
resetting renewal process is Markovian, i.e., when the resets
are following a Poisson process with exponentially distributed
waiting times between resets (see, e.g., Ref. [25,29] and [30]
for discrete reset times)

A standard method for solving such an equation is to use
the Laplace transform with respect to the variable t . For ex-
ample, if there is only one reset in (0, t ), the contribution to
Q(p, t |x0)r is

QN=1(p, t |x0)r =
∫ t

0
dτ1F (p, τ1)

∫ t

0
dBF ∗(p, B)

× δ(t − τ1 − B),

whose Laplace transform is Q̃N=1(p, s|x0)r = Lt→s

[Q̃N=1(p, t |x0)r] = F (p, s)F ∗(p, s), once the convolution
theorem is used. Analogously, if there are two resets in
(0, t ), the contribution to Q(p, t |x0)r is Q̃N=2(p, s|x0)r =
F (p, s)2F ∗(p, s) and so on. Then summing the contributions
from all the possibles resets in (0, t ) we have that (9) turns
into

Q̃(p, s|x0)r =
∞∑

N=0

F (p, s)N F ∗(p, s) = F ∗(p, s)

1 − F (p, s)

= Lt→s[ϕ∗(t )Q(p, t |x0)0]

1 − Lt→s[ϕ(t )Q(p, t |x0)0]
, (10)

in the Laplace space. This equation allows to find the char-
acteristic function of a functional of a random walk under
resetting in terms of the characteristic function of the func-
tional of a random walk without resetting. Note that in the
absence of resetting ϕ → 0 and ϕ∗ → 1, so that Q̃(p, s|x0)r =
Q̃(p, s|x0)0.

When the resetting mechanism is a Poisson process, the
times between resetting events are exponentially distributed

with the constant rate r. Then, considering the particular case
ϕ(t ) = re−rt , Eq. (10) turns out to be

Q̃(p, s|x0)r = Q̃(p, s + r|x0)0

1 − rQ̃(p, s + r|x0)0
(11)

which is a result derived previously in Refs. [26,27].

A. Moments

Next, we want to relate the moments of the functional in
the presence of resetting with the moments of the functional
without resetting. To do this, we start with Eq. (10). Taking
the first derivative of Eq. (10) with respect to p we find from
Eq. (6)

〈Z̃ (s|x0)〉r = −∂Q̃(p, s|x0)r

∂ p

∣∣∣∣
p=0

= − ∂

∂ p

(
F ∗(p, s)

1 − F (p, s)

)
p=0

(12)

= − 1

1 − F (0, s)

∂F ∗(p, s)

∂ p

∣∣∣∣
p=0

− F ∗(0, s)

[1 − F (0, s)]2

∂F (p, s)

∂ p

∣∣∣∣
p=0

, (13)

where F (0, τ ) = ϕ(τ ) and F ∗(0, τ ) = ϕ∗(τ ). Hence,

〈Z̃ (s|x0)〉r = Lt→s[ϕ∗(t )〈Z (t |x0)〉0]

1 − ϕ(s)
+ Lt→s[ϕ (t )〈Z (t |x0)〉0]

s[1 − ϕ(s)]
.

(14)

Analogously, taking the second derivative of Eq. (10) with
respect to p, we straightforwardly find

〈Z̃ (s|x0)2〉r = 2Lt→s[ϕ(t )〈Z (t |x0)〉0]

1 − ϕ(s)
〈Z̃ (s|x0)〉r

+ 1

1 − ϕ(s)

{
Lt→s[ϕ

∗(t )〈Z (t |x0)2〉0]

+ 1

s
Lt→s[ϕ(t )〈Z (t |x0)2〉0]

}
. (15)

Following the steps above, we can obtain the corresponding
expressions for higher-order moments.

B. Ergodic properties

In recent years there was much interest in studying the
ergodic properties of certain observables defined as functions
anomalous diffusion paths [31–35]. The ergodicity breaking
parameter is a measure for the heterogeneity among different
trajectories of one ensemble and provides useful statistical
information. Let us consider a stochastic trajectory {x(τ ); 0 �
τ � t, x(0) = x0}, i.e., observed from τ = 0 up to time τ = t .
Consider an observable O[x(τ )], a function of the trajec-
tory x(τ ). Since x(τ ) is stochastic in nature, the observable
O[x(τ )] will also fluctuate between the realizations. An ob-
servable of the random walk is said to be ergodic if the
ensemble average equals the time average 〈O〉 = O in the
long-time limit. This means that if O[x(τ )] is ergodic then its
time average O is not a random variable. As a consequence,
the limiting PDF (the PDF in the long-time limit) of O is a
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delta function centered on its ensemble average, that is,

P(O, t → ∞) = δ(O − 〈O〉). (16)

At this point, let us define the density P(x, t ) as the probability
of finding the walker at the point x at time t , i.e., it is the
propagator. If the observable is integrable with respect to the
density P(x, t ), then the ensemble average is

〈O[x(t )]〉 =
∫ ∞

−∞
O[x]P(x, t )dx, (17)

while the time average of O[x(t )] is defined as

O[x(t )] = 1

t

∫ t

0
O[x(τ )]dτ. (18)

For nonergodic observables, since O is random, its variance
Var(O) is nonzero in the long-time limit. Otherwise, for an er-
godic observable limt→∞ Var(O) = 0. Keeping this in mind,
one can define the ergodicity breaking parameter EB in the
following way:

EB = lim
t→∞

Var(O)

〈O〉2
= lim

t→∞
〈O2〉 − 〈O〉2

〈O〉2
. (19)

For ergodic observables, one should have EB = 0.
In the examples below we consider the observable

O[x(t )] = U [x(t )] so that the time average of the observable
is from Eq. (18)

O[x(t )] = 1

t

∫ t

0
U [x(τ )]dτ = Z (t )

t
. (20)

and so

〈O〉 = 〈Z (t )〉
t

, 〈O2〉 = 〈Z (t )2〉
t2

. (21)

Finally, from Eq. (19) the ergodicity breaking parameter can
be expressed in terms of the two first moments of the func-
tional

EB = 〈Z (t )2〉
〈Z (t )〉2 − 1 (22)

as t → ∞. Another quantity of interest that characterizes
ergodicity is the PDF of the time averaged observable O[x(t )]
around its mean for long-times, so we define the dimension-
less random variable

η = lim
t→∞

O
〈O〉 (23)

and from Eqs. (20) and (21), the relative time averaged ob-
servable U [x(t )] is defined by

η = lim
t→∞

Z (t )

〈Z (t )〉 . (24)

Once P(Z, t |0) is known, the PDF of η follows from

P(η) = P(Z = η〈Z (t )〉, t )〈Z (t )〉. (25)

It is interesting to note that the variance of η is nothing but the
ergodicity breaking parameter:

Var(η) = 〈η2〉 − 〈η〉2 = 〈η2〉 − 1 = 〈Z (t )2〉
〈Z (t )〉2

− 1 = EB.

Therefore, for ergodic observables (EB = 0) one has
that the limiting PDF of the time averaged observable is
P(η) = δ(η − 1).

IV. GENERAL RESULTS

In this section we derive some results for any stochastic
functional of a random walk.

A. Limiting PDF

We consider a resetting time PDF with finite moments. In
this case, the Laplace transform of the PDF is, in the long-time
limit (s → 0), ϕ(s) 	 1 − 〈t〉Rs + · · · where 〈t〉R is the mean
resetting time. Expressing the term exp(−st ) as a power series
we can write

Lt→s[ϕ (t )〈Z (t |x0)〉0] =
∞∑

n=0

(−s)n

n!

∫ ∞

0
t nϕ(t )〈Z (t |x0)〉0dt .

(26)

Most functionals fulfill 〈Z (t |x0)〉0 ∼ tμ in the long-time limit,
where μ is a positive real number. The specific value of μ

depends on the specific dependence of U [·] on x(τ ) and on
the underlying random walk. Then,∫ ∞

0
t nϕ(t )〈Z (t |x0)〉0dt ∼

∫ ∞

0
t n+μϕ(t )dt = 〈t n+μ〉R < ∞,

(27)

where 〈t n+μ〉R is the moment of order n + μ of the ressetting
time PDF which is finite for any n. In consequence we can
approximate the expansion (26) as

Lt→s[ϕ(t )〈Z (t |x0)〉0] =
∫ ∞

0
ϕ(t )〈Z (t |x0)〉0dt + O(s).

Analogously,

Lt→s[ϕ
∗(t )〈Z (t |x0)〉0] =

∫ ∞

0
ϕ∗(t )〈Z (t |x0)〉0dt + O(s).

Then, taking the limit s → 0 to Eq. (14) we find

〈Z̃ (s|x0)〉r 	 1

〈t〉Rs2

∫ ∞

0
ϕ(τ )〈Z (τ |x0)〉0dτ,

which after Laplace inversion yields

〈Z (t |x0)〉r 	 t

〈t〉R

∫ ∞

0
ϕ(τ )〈Z (τ |x0)〉0dτ. (28)

Proceeding analogously with Eq. (15) and considering a
power dependence of 〈Z (t |x0)2〉0 on time, we obtain

〈Z (t |x0)2〉r 	 t2

〈t〉2
R

[∫ ∞

0
ϕ(τ )〈Z (τ |x0)〉0dτ

]2

. (29)

In consequence, by virtue of Eq. (22), we obtain EB =
0 and the observable O[x(t )] = U [x(t )] is ergodic, which
means that in the long-time limit

P(Z, t |x0)r = δ(Z − 〈Z (t |x0)〉r ), (30)

where 〈Z (t |x0)〉r is given by Eq. (28). Changing the PDF in
Eq. (30) to the variable η = Z/〈Z (t |x0)〉r one has

P(η|x0)r = δ(η − 1). (31)
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It is worth mentioning that we have been able to find the
limiting PDF given by Eq. (31) from the two first moments
of Z only due to the ergodicity of the observable U [x(t )]
when the resetting PDF has finite moments. However, the
same result can be obtained from the characteristic function
under resetting times drawn from a PDF with finite moments.
To do this, we need to consider the long time limit. Since
the functionals we are considering here are additive, Z grows
with t , so we can expect Z to be of the order of t , which
means that s and p are comparable. Therefore, the long time
limit corresponds to assuming that s and p are both small and
comparable.

Writing Q(p, t |x0)0 as a moment-generating function

Q(p, t |x0)0 =
∞∑

n=0

(−p)n

n!
〈Z (t |x0)n

0〉,

one can see that

Lt→s[ϕ(t )Q(p, t |x0)0]

=
∞∑

n=0

(−p)n

n!

∫ ∞

0
e−stϕ(t )〈Z (t |x0)n〉0dt,

and analogously Lt→s[ϕ∗(t )Q(p, t |x0)0]. Considering the
limit p → 0 to the above expression, the approximations

Lt→s[ϕ(t )Q(p, t |x0)0]

= ϕ(s) − p
∫ ∞

0
e−stϕ(t )〈Z (t |x0)〉0dt + O(p2)

and

Lt→s[ϕ(t )∗Q(p, t |x0)0]

= ϕ∗(s) − p
∫ ∞

0
e−stϕ∗(t )〈Z (t |x0)〉0dt + O(p2)

hold if

lim
s→0

∫ ∞

0
e−sτ ϕ(τ )〈Z (τ |x0)n〉0dτ < ∞ (32)

for any n ∈ N. This condition is necessary to guarantee that
all the coefficients of the expansion in powers of p are finite
when taking the limit s → 0. Thus, from Eq. (10)

Q̃(p, s|x0)r 	 ϕ∗(s)

1 − ϕ(s) + p
∫ ∞

0 e−stϕ(t )〈Z (t |x0)〉0dt

= 1

s + pI (s)
, (33)

as p → 0, where

I (s) = s

1 − ϕ(s)

∫ ∞

0
e−stϕ(t )〈Z (t |x0)〉0dt . (34)

If the resetting times PDF has finite moments, then ϕ(s) 	
1 − 〈t〉Rs + ... as s → 0, then condition (32) is always sat-
isfied, as can be shown using the same arguments to find
Eq. (27). Hence, lims→0 I (s) = I where

I = 1

〈t〉R

∫ ∞

0
ϕ(τ )〈Z (τ |x0)〉0dτ.

FIG. 1. Limiting PDF of observable Z for exponentially dis-
tributed resetting of three observables in Laplace space. The black
line represents the Laplace transform of Eq. (31) and the symbols
are obtained from the Laplace transform of the results of Monte
Carlo simulations. In yellow squares Z = Ta with a = 1; in orange
triangles Z = A, and in light-blue circles Z = T +. In the inset we
represent the same data in η space. For all simulations: x0 = 0,
D = 1, 〈t〉R = 1.2 with ϕ(t ) = e−t/〈t〉R/〈t〉R. All simulations are run
for N = 105 particles for a total simulation time of t = 107 with a
time discretization of dt = 0.1. The data points are plotted with their
error bars.

Finally, performing the double Laplace inversion of Eq. (33)
with respect to p and s we get

P(Z, t |x0)r = δ(Z − It ),

which is exactly Eq. (30) provided that 〈Z (t |x0)〉r 	 It from
Eq. (28). In terms of the variable η = Z/It it reads P(η|x0)r =
δ(η − 1) as Eq. (31). This constitutes the first general result of
this work.

From the derivation above, we see that any positive func-
tional of a random walk in the presence of stochastic resetting
is ergodic, provided that the PDF of resetting times has fi-
nite moments. Thus, for sufficiently long times, the PDF of
the functional P(Z, t |x0)r tends to a delta centered on the
mean value. In Fig. 1 we check the results for the limiting
PDF of three observables: (i) the occupation time inside the
interval [−a, a], Ta = ∫ t

0 θ (−a < x(τ ) < a)dτ , (ii) the area
under the square position A = ∫ t

0 x2(τ )dτ (this functional
has been studied when the underlying motion is subdiffu-
sive and without resetting [24]), and (iii) the half occupation
time T + = ∫ t

0 θ (x(τ ))dτ , for exponentially distributed resets.
We have conducted Monte Carlo simulations to compute the
PDF of the observables when the underlying random walk
is a Brownian motion, details on the simulations can be
found in Appendix B. We compare the data with the theo-
retical prediction in the Laplace space, in which P(u|x0)r =∫ ∞

0 e−uηP(η|x0)rdη = e−u. As can be seen in the figure, the
three functionals Ta, A, and T + collapse on the theoretical line,
which proves that our theoretical result given in Eq. (30) holds
for any positive functional.

B. Moments in the long-time limit

We can obtain the temporal dependence of the first two
moments 〈Z (t |x0)〉r and 〈Z (t |x0)2〉r in the long-time limit. To
do this, we again assume that 〈Z (t |x0)〉0 ∼ tμ with μ > 0, as
t → ∞. Let us consider that the resetting times are drawn
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TABLE I. Top: long-time limit behavior of the two first moments
for 0 � μ � 1. Bottom: long-time limit behavior of the two first
moments for 1 < μ � 2.

α 〈Z (t |x0)〉r 〈Z (t |x0)2〉r

0 < α � μ ∼tμ ∼t2μ

μ < α � 1 ∼tα ∼t2α

1 < α � 2 ∼t ∼t2

α 〈Z (t |x0)〉r 〈Z (t |x0)2〉r

0 < α � 1 ∼tμ ∼t2μ

1 < α � μ ∼t1+μ−α ∼t1+2μ−α

from a fat-tailed PDF ϕ(t ) ∼ t−1−α with 0 < α � 2. The mo-
ments of this PDF are diverging if 0 < α < 1, but the first
moment is finite if 1 < α < 2. In particular, let us consider
that the resetting time PDF follows the fat-tailed density

ϕ(t ) = αtα
0

t1+α
, t > t0, (35)

and 0 otherwise. Note that the limit α → 0 here corresponds
to the absence of resetting because in this limit ϕ → 0 and
ϕ∗ → 1. To compute the long-time limit we need to consider
s → 0 in Eqs. (14) and (15). To do this we need to deal with
integrals of the form (see Chapter 13 of Ref. [36])∫ ∞

t0

e−st tβdt = tβ+1
0 e−st0U (1, 2 + β, st0), (36)

where U (a, b, z) is the Kummer U function. In the limit st0 �
1 this function can be approximated to find (see Appendix A
for details) ∫ ∞

t0

e−st tβdt ∼
{

const, β < −1
s−1−β, β > −1.

Hence, the terms in Eqs. (14) and (15) follow as

Lt→s[ϕ(t )〈Z (t |x0)n〉0]

∼
∫ ∞

t0

e−st t nμ−1−αdt ∼
{

const, α > nμ

sα−nμ, α < nμ,

and

Lt→s[ϕ
∗(t )〈Z (t |x0)n〉0]

∼
∫ ∞

t0

e−st t nμ−αdt ∼
{

const, α > 1 + nμ

sα−nμ−1, α < 1 + nμ.

Keeping only the dominant terms in Eqs. (14) and (15), we
obtain the results in Table I. Note that the scaling exponent of
the moments depends on the values of the exponents α and μ.
This is the second general result of this work, where we find
the long-time behavior of the first two moments of a functional
with fat-tailed resetting in terms of the temporal scaling of the
moments of the functional without resetting.

For the particular case where Z corresponds to the occupa-
tion time in an interval Ta, in the absence of resetting, i.e., for
free Brownian motion, 〈Ta(t )〉0 ∼ t1/2 and 〈T 2

a (t )〉0 ∼ t and

FIG. 2. Exponent ν (of ∼t ν) of (a) and (b) moments of the
observables T +, Ta, and A for a Brownian walker with fat-tailed
resetting [Eq. (35)] as a function of the resetting exponent α. For
every value of α, we have computed the values of the observables
for the simulation times t = {103, 104, 105, 106, 107}. Then, we have
performed a least-squares fit to log10(〈Z (t )1,2〉r ) = ν log10(t ) + c, the
symbols in the plots represent the obtained values of ν. The solid
lines are obtained from Table I. For all simulations, the parameters
used are: a time discretization of dt = 0.1, D = 1, and t0 = 1 for
the resetting PDF, the points for α = 0.2, 1.8 are run for N = 106

particles, and all the rest for N = 105.

so μ = 1/2. The results in Table I predict

〈Ta(t )〉r ∼
{

t1/2, 0 < α � 1/2
tα, 1/2 � α < 1

,

〈
T 2

a (t )
〉
r ∼

{
t, 0 < α � 1/2

t2α, 1/2 � α < 1

in agreement with Eqs (118) and C15 in Ref. [28].
In Fig. 2 we check the results shown in Table I for the three

different stochastic functionals considered in Fig. 1: Ta, T +,
and A. The agreement is excellent.

V. APPLICATION: HALF OCCUPATION TIME

In Ref. [28] we studied the statistical properties of the oc-
cupation time in an interval Ta, using the backward recurrence
time to compute the renewal equation for the PDF of Ta. In
this section, we apply the previous general results to the case
of the half occupation time:

T +(t |x0) =
∫ t

0
θ [x(τ )]dτ, (37)

which is a measure of the time spent by the walker in x > 0
along the temporal window [0, t].

A. The two first moments and EB

In the absence of resetting the mean and the mean
square half occupation time of the Brownian motion are
〈T +(t |x0)〉0 = t/2 and 〈T +(t |x0)2〉0 = 3t2/8. If we consider
the fat-tailed resetting density in Eq. (35) and using Eq. (36)
together with (14) and (15) we obtain (see Appendix C for
details)

〈T +(t |x0)〉r 	 t

2
,

〈T +(t |x0)2〉r 	
{

3−α
8 t2, 0 < α < 1
1
4 t2, 1 < α < 2

, (38)
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FIG. 3. (a) Mean (m = 1) and mean square (m = 2) half occupa-
tion time of a Brownian motion with fat-tailed resetting [Eq. (35)]
over the m-th power of the total simulation time t as a function
of the resetting exponent α. The solid black line and the dashed
gray line represent Eq. (38) over t and t2, respectively. The symbols
are obtained from Monte Carlo simulations, the light-blue circles
represent the mean half occupation time over t ; and the yellow
squares represent the mean square half occupation time over t2.
(b) The EB parameter for T + as a function of the resetting exponent
α. The solid black line represents Eq. (39) and the orange triangles
are obtained from the same Monte Carlo simulations used in (a). (c)
and (d) Represent the same analysis but for a subdiffusive walker
with fat-tailed resetting. In these figures the lines correspond to Eq.
(40) in (c), and Eq. (41) in (d). The symbols are obtained from Monte
Carlo simulations of a CTRW. For all simulations, the parameters
used are: x0 = 0, and t0 = 1 for the resetting PDF. For (a) and (b)
D = 1, and dt = 0.1 and for (c) and (d) the waiting time PDF has
tγ ,0 = 1, and γ = 0.7, and the jump PDF σ = 0.01. All simulations
are run for N = 105 particles for a total simulation time of t = 107.
The data points are plotted with their error bars.

in the long-time limit. Now, from (22) the EB parameter easily
follows:

EB+ =
{ 1−α

2 , 0 < α < 1
0, 1 < α < 2

. (39)

Equations (38) and (39) are the third result of this work.
Note that this result predicts an ergodic transition between
nonergodic and ergodic phases at α = 1. For 1 < α < 2 the
observable θ [x(τ )] is ergodic, which is in agreement with
the fact that for these values of α the resetting times PDF has
the first moment finite and the limiting PDF for T + converges
to the delta function. Note that the condition that the resetting
time PDF has to have finite moment can be actually relaxed to
require that only the first moment must be finite in this case.
For 0 < α < 1 the resetting times PDF has infinite moments,
the observable is nonergodic, and the limiting PDF converges
towards a generalized arcsine law as we show below. Note
that for α = 0 one has EB+ = 1/2, which corresponds to the
value of EB+ in the absence of resetting.

It is interesting to note that the presence of resetting re-
duces the value of EB+ to such an extent that if the resetting
is frequently enough (in particular, if α > 1) the observ-
able becomes ergodic. In Figs. 3(a) and 3(b) we compare

Eqs. (38) and (39) with numerical simulations. The agreement
is excellent.

Let us now consider that the walker moves subdiffusively.
In this case, for a Brownian motion without resetting the two
first moments of the half occupation time are 〈T +(t |x0)〉0 =
t/2 and 〈T +(t |x0)2〉0 = (4 − γ )t2/8, where γ is the exponent
of the power-law PDF of waiting times of the walker [37].
Considering the fat-tailed resetting PDF given in Eq. (35)
then, using (36), we have

〈T +(t |x0)〉r 	 t

2
,

〈T +(t |x0)2〉r 	
{

4−γ−α(2−γ )
8 t2, 0 < α < 1

1
4 t2, 1 < α < 2

(40)

in the long-time limit. Now, from Eq. (22) the EB parameter
easily follows:

EB+ =
{

(1−α)(2−γ )
2 , 0 < α < 1

0, 1 < α < 2
. (41)

Equations (40) and (41) are the fourth result of this work.
For γ = 1 the walker moves diffusively and Eq. (41) reduces
to Eq. (39) as expected. In addition, the transition to the
ergodic phase is determined by the values of α for which the
resetting PDF has finite first moment, i.e., it occurs again at
α = 1. We proceed in an analogous way than for the diffusive
case, and in Figs. 3(c) and 3(d) we compare the predictions
from Eqs. (40) and (41) with Monte Carlo numerical sim-
ulations. For the subdiffusive walker, we have simulated a
Continuous Time Random Walk (CTRW) with a jump PDF of

(x) = δ(x+σ )

2 + δ(x−σ )
2 and a power-law waiting time PDF of

parameter γ : ϕ(t ) = γ tγ

γ ,0t−1−γ , t > tγ ,0 and 0 otherwise,
tγ ,0 = 1. Again, we see a good agreement between the ana-
lytic predictions and the simulations.

B. Limiting PDF

To compute the limiting PDF of Z in the presence of
resetting, we start from its characteristic function Q̃(p, s|x0)r ,
which can be computed from Eq. (10). Assume that in the
long-time limit the PDF P(Z, t |x0)0 has a scaling solution

lim
t→∞ P(Z, t |x0)0 = 1

tβ
f

(
Z

tγ

)
.

Then, the Laplace transform in the numerator of Eq. (10) can
be written as

Lt→s[ϕ(t )Q(p, t |x0)]

=
∫ ∞

0
dt e−stϕ(t )

∫ ∞

0
e−pZ 1

tβ
f

(
Z

tγ

)
dZ

=
∫ ∞

0
du f (u)

∫ ∞

0
e−st−putγ

tγ−βϕ(t )dt, (42)

where we have introduced the new variable u = Z/tγ . Note
that the integral over time can be expressed as the Laplace
transform of ϕ(t ) only if γ = β = 1. This is the case of
the half occupation time, for which the PDF P(T +, t |x0)0

has a limiting density of the form limt→∞ P(T +, t |x0)0 =
f (T +/t )/t for 0 < T + < t . Two relevant examples are the
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Lévy asrcsine [38] or the Lamperti [39] distributions which
correspond to case where the underlying random walk is either
normal diffusion or subdiffusion, respectively. In this case,
u = T +/t and the Laplace transforms in Eq. (10) read

Lt→s[ϕ(t )Q(p, t |x0)] =
∫ 1

0
f (u)ϕ̃(s + pu)du,

Lt→s[ϕ
∗(t )Q(p, t |x0)] =

∫ 1

0
f (u)ϕ̃∗(s + pu)du. (43)

To proceed further, we consider the long time limit where s
and p are both small and comparable. Since u ∈ [0, 1], the
argument s + pu is always small. Let us consider that the PDF
of resettings has a power law fall-off with index α

ϕ(t ) ∼ t−1−α, 0 < α < 2 (44)

as t → ∞. It is not difficult to show that for 0 < α < 1 all
the moments of ϕ are divergent, while if 1 < α < 2, only the
first moment 〈tR〉 = ∫ ∞

0 tϕ(t )dt is finite. Using the Tauberian
theorem [40], Eq. (44) admits the following expansion in
Laplace space for small s:

ϕ̃(s) =
{

1 − bαsα + · · · , 0 < α < 1

1 − 〈tR〉s + · · · , 1 < α < 2,
(45)

where bα depends on the details of the specific expression for
ϕ(t ). With the help of (45), Eqs. (43) can be approximated as

Lt→s[ϕ(t )Q(p, t |x0)]

≈
{

1 − bα

∫ 1
0 f (u)(s + pu)αdu, 0 < α < 1

1 − 〈tR〉 ∫ 1
0 f (u)(s + pu)du, 1 < α < 2

Lt→s[ϕ
∗(t )Q(p, t |x0)]

≈
{

bα

∫ 1
0 f (u)(s + pu)α−1du, 0 < α < 1

〈tR〉, 1 < α < 2.
(46)

Let us first consider the case 1 < α < 2. Plugging Eq. (46)
into Eq. (10)

Q(p, s|x0)r ≈ 1∫ 1
0 f (u)(s + pu)du

= 1

s + p〈u〉 ,

where 〈u〉 = ∫ 1
0 u f (u)du. Since 〈u〉 = 〈T +〉/t , the double

Laplace transform of Q(p, s|x0)r with respect to p and s yields

P(T +, t |x0)r = δ(T + − 〈T +(t |x0)〉r ) (47)

which is in agreement with Eq. (30).
Next, we consider the case 0 < α < 1. By setting Eq. (46)

in Eq. (10) we readily obtain

Q(p, s|x0)r ≈
∫ 1

0 f (u)(s + pu)α−1du∫ 1
0 f (u)(s + pu)αdu

. (48)

It is worth mentioning that this result establishes a link be-
tween the characteristic function of T + under a resetting with
the limiting PDF of T + in absence of resetting assuming that
the resetting PDF decays as t−1−α for 0 < α < 1 as t → ∞,
regardless of the other details and structure of the resetting
PDF. The characteristic function (48) can be rewritten in the

scaling form

Q(p, s|x0)r ≈ 1

s
gα

(
p

s

)
,

where

gα (χ ) = 1

χ

∫ 1
0 f (u)(χ−1 + u)α−1du∫ 1

0 f (u)(χ−1 + u)αdu
(49)

and χ = p/s. The double Laplace inversion from p and s to
T + and t has the form P(T +, t |x0)r ≡ P(z)r where z = T +/t .
To find P(z)r we follow the method in Ref. [25] by noting

P(z)r = − 1

πz
lim
ε→0

Im

[
gα

(
− 1

z + iε

)]
. (50)

Calculating the imaginary part of Eq. (50) we find (see Ap-
pendix D for details)

P(z)r = sin(απ )

π

× Cα (z)C−1+α (1 − z) +C−1+α (z)Cα (1 − z)

Cα (z)2 + 2Cα (z)Cα (1 − z) cos(απ ) + Cα (1 − z)2
,

(51)

with z = T +/t and Cβ (z) is given in Eq. (D2). Equation (51) is
the fifth result of this work. Notably, this is the limiting PDF
for T +/t under resetting times sampled from a PDF with a
tail that decays as t−1−α with 0 < α < 1. This expression is
general and holds for any underlying isotropic random walk.
It can be explicitly found if the limiting PDF of T +/t without
resetting is known. It is important to stress that Eq. (51)
holds when the resetting time PDF decays as a power law
with an exponent such that all moments are divergent, this
is, for α < 1. For α � 1, the resetting times PDF has the first
moment finite and, therefore, the limiting PDF is not given
by Eq. (51) but by Eq. (30). Note that we have derived this
result by using that scaling solution of the reset-free process
is limt→∞ P(Z, t |x0)0 = f (Z/t )/t , therefore Eq. (51) will also
hold for any other potential functional with the same scaling
as T +.

It is interesting to analyze the shape of the limiting PDF
P(z)r in terms of the exponent α and other parameters related
to the underlying random walk. As we show below, the limit-
ing PDF P(z)r may have a ∪ shape, a W shape, or a ∩ shape,
depending on the values of α. The transition form the ∪ shape
to the W shape depends on the existence of a maximum at
T + = t/2 (z = 1/2), while the transition from the W shape
to the ∩ shape depends on the behavior when T + is close to
0 (z → 0+) and when T + is close to t (z → 1−). To get the
equation for the value of α for which P(z)r has a local max-
imum at z = 1/2 we compute (d2P(z)r/dz2)z=1/2 = 0 using
Eq. (51) and find

Cα

(
1

2

)
C′′

α−1

(
1

2

)
−C′′

α

(
1

2

)
Cα−1

(
1

2

)
− 2C′

α

(
1

2

)
C′

α−1

(
1

2

)

= 2
Cα−1

(
1
2

)
C′

α

(
1
2

)
Cα

(
1
2

) tan2

(
απ

2

)
, (52)

where the primes stand for derivatives with respect to z. This
equation has to be numerically solved once the analytic ex-
pression for Cβ (z) is calculated from Eq. (D2).
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1. Brownian walker

If, for example, the underlying random walk is a Brownian
motion then the limiting PDF of T +/t without resetting obeys
the Lévy arcsine law [38]

f (u) = 1

π
√

u(1 − u)
, (53)

if 0 < u < 1 and from (D2) with (53) we obtain

Cβ (z) = �(1 + β )√
π�

(
3
2 + β

) z
1
2 +β

2F1

(
1

2
,

1

2
;

3

2
+ β; z

)
, (54)

where 2F1(·) is the Gauss’s hypergeometric function. In the
limit u → 0, f (u) ∼ u−1/2 and from Eq. (54) we see that
Cβ (z) ∼ zβ+1/2 as z → 0. Hence, from Eq. (51)

P(z)r ∼ zα−1/2, z → 0+,

P(z)r ∼ (1 − z)α−1/2, z → 1−. (55)

As we can see from Eq. (55), when α > 1/2, the most
unlikely values of T + are 0 and t , which are given with
vanishing probability. In this case, due to the symmetry of
the random walk, the most likely value is T + = t/2, giving
rise to a ∩ shape limiting PDF. Then, a sufficiently frequent
resetting induces the walker to spend an equal amount of time
in the domain x > 0 and x < 0, in the long-time limit. Con-
versely, recall that for the case without resetting, the limiting
PDF follows the Lévy’s arcsine law, where the most probable
values of T + are 0 and t , implying that a walker is mostly in
the positive or negative domain for its entire trajectory. When
α < 1/2, the resetting is less frequent and the probability
of T + at 0 and t does not vanish anymore. In this regime,
we can distinguish two possibilities: for a given value of α,
say αc, if 0 < α < αc the limiting PDF has a ∪ shape, as
in the case without resetting, and the most likely values are
T + = 0 or T + = t . On the other hand, if αc < α < 1/2, the
limiting PDF has the W shape and the most likely values are
T + = 0, T + = t , and T + = t/2, as a transition between ∪ and
∩ shapes. The value of αc can be found by solving Eq. (52)
with Eq. (54). The resulting nonlinear equation for α has to be
numerically solved. It solution yields αc = 0.269.

In Fig. 4 we compare Eq. (51) with Eq. (54) against Monte
Carlo simulations conducted for three different resetting time
PDFs which decay in time as t−1−α in the long-time limit:
power-law (PL) ϕ(t ) = αtα

0 t−1−α, t > t0 and 0 otherwise,
t0 = 1; Mittag-Leffler (ML) ϕ(t ) = tα−1τ−αEα,α (−tατ−α )
with Eα,β (·) the two-parametric Mittag-Leffler function
[41,42], τ = |�(1 − α)|1/α; and Lévy (LV), where ϕ(t ) =
lα (t ) is the one-sided Lévy stable distribution [43,44]. As can
be seen, the limiting PDF (51) agrees with all three cases.
This confirms that the limiting PDF depends only on the tail
of the resetting times PDF. In addition, we have included the
case of exponentially distributed resetting time together with
the power-law PDF with α > 1 [Fig. 4(d)]. In both cases, the
resetting times PDF has a finite first moment, and the limiting
PDF under resetting fits Eqs. (31). It is also interesting to
observe the aforementioned transition of the three different
shapes W, ∪, and ∩ for different values of α.

FIG. 4. Limiting PDF of the half occupation time of a Brownian
Motion with resetting for a variety of resetting distributions. All
symbols are obtained from Monte Carlo simulations of a Brownian
walker with different resetting PDFs: power-law (PL) in light-blue
circles with t0 = 1; Mittag-Leffler (ML) in yellow squares; Lévy
(LV) in orange triangles; and exponential (EX) in pink stars with
〈t〉R = t0α(α − 1)−1. In (a), (b), and (c) the solid black line represents
Eq. (51) with the Cβ (z) coefficients obtained from Eq. (54). In (d)
we present the Laplace transform of Eq. (47) P(u)r = Lz→u[P(z)r].
In the inset of (d) it is plotted in z space. For all simulations the
parameters used are: x0 = 0, D = 1, and parameter of the resetting
distribution, α = 0.2, 0.4, 0.6 and 1.2 for (a)–(d), respectively. All
simulations are run for N = 105 particles for a total simulation time
of t = 107 with a time discretization of dt = 0.1. The data points are
plotted with their error bars.

2. Subdiffusive walker

When the underlying random walker performs a subdiffu-
sive motion, then the limiting PDF in the absence of resetting
is given by the Lamperti distribution [39]

f (u) = sin(γπ/2)

π

[u(1 − u)]
γ

2 − 1

uγ + (1 − u)γ + 2[u(1 − u)]
γ

2 cos(γπ/2)
.

(56)

Recall that the exponent γ is related to the index of fractional
derivative, or alternatively, it is the exponent of the waiting
time between jumps when its PDF decays as t−1−γ with
0 < γ < 1 in the long-time limit. In this case, it is not possible
to perform analytically the integral in Eq. (D2). However, we
can unveil the behavior of Eq. (51) near z = 0 and z = 1. This
will allow us to know for which value of α and γ the transition
between the shapes ∪ and W appears. Close to z = 0 the
Lamperti distribution (56) behaves as f (u) ∼ uγ /2−1 so that
from (D2) we find Cβ (z) ∼ zβ+1/2. Hence,

P(z)r ∼ zα+ γ

2 −1, z → 0+,

P(z)r ∼ (1 − z)α+ γ

2 −1, z → 1−, (57)

Then, if 0 < α < αc the PDF P(z)r has the ∪ shape, if αc <

α < α∗ it has the shape W where α∗ = 1 − γ /2, and for
α∗ < α < 1 it has the ∩ shape. The transition between W
and ∩ shapes is attained at α = αc which has to be found
as in the previous example. The transition at α∗ = 1 − γ /2
can be understood in terms of the First Passage Time (FPT)
of the walker to reach the origin. If the FPT has a diverging
mean, the walker stays either at x > 0 or x < 0, and therefore
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FIG. 5. (a) Phase diagram of the limiting PDF of T + of a
subdiffusive walker with resetting of exponent α. The dashed line
represents αc and the solid line represents α∗ = 1 − γ /2. The black
symbols mark the corresponding (γ , α) points represented in (b)–(d).
(b)–(d) limiting PDF of T + for a subdiffusive walker with different
resetting PDFs: power-law (PL) in light-blue circles with t0 = 1;
Mittag-Leffler (ML) in yellow squares; Lévy (LV) in orange trian-
gles. The symbols are obtained from Monte Carlo simulations of a
CTRW with σ = 0.01. The black lines are computed by numerical
integration of Eq. (D2) with the Cβ (z) coefficients obtained from
Eq. (56). For all simulations, the parameters of the resetting dis-
tribution are α = 0.25, 0.5, and 0.75 for (b)–(d), respectively. The
parameters of the waiting time PDF for all cases are tγ ,0 = 1, and
γ = 0.7. All simulations are run for N = 105 particles for a total
simulation time of t = 107, and initial condition x0 = 0. The data
points are plotted with their error bars.

the limiting PDF of T + is nonvanishing at 0 and t (∪ or W
shapes). On the other hand, when the mean of the FPT is
finite, the walker crosses the origin at a finite time, then the
probability of the limiting PDF of T + vanishes at 0 and t ,
i.e., its has a maximum (∩ shape). The transition between a
finite and diverging mean for a CTRW with resets is known
[7] and is precisely at α = 1 − γ /2. The same reasoning is
valid for the case of the diffusive walker, as in that case γ = 1.
In Ref. [16] the authors find a transition at α = 1 − γ /2 for
the propagator of a subdiffusive walker under a power-law
resetting to the initial condition. For sufficiently long times,
they find that the propagator changes from being flat near the
origin for α < 1 − γ /2 to having a sharp peak at x = 0 with
a heavy-tailed decay for larger x. This indicates that resets
are frequent enough to create strong localization around the
reset point x = 0, while still allowing significant excursions
away from it. The resulting profile has no characteristic scale,
reflecting the interplay between the underlying random walk
and the reset dynamics, in agreement with the transition ob-
served in the limiting PDF of the half-occupation time. This
same reasoning can be applied to the case in the previous sec-
tion of a Brownian walker with power-law resetting, since we
have observed a similar transition at α = 1/2 for the infinite
densities of the process [28].

In Fig. 5(a) we present the phase diagram for the
shapes of P(z)r in terms of the exponents α and γ . We
also present the dependence of the curves α∗ and αc. In
Figs. 5(b)–5(d) we show a comparison between the curves
obtained by numerically integrating Eq. (D2) with the Cβ (z)

coefficients obtained from Eq. (56) and numerical simulations
of the CTRW. In the figure, we show an example for the three
different cases: ∪ shape, W shape, and ∩ shape. In all three
cases, we obtain a very good agreement for three resetting
distributions: power-law, Mittag-Leffler, and Lévy. This again
confirms that the limiting PDF only depends on the tail of the
resetting times PDF, also for the subdiffusive case. We want
to note that fine numerical precision is needed, especially as
z → 0, 1, to numerically integrate the limiting PDF. This is
particularly relevant near the transition values of αc and α∗.

This behavior under resetting is reminiscent of the effects
seen when a confining potential is present. Resetting the
walker’s position to the origin has certain similarities with the
presence of a confining potential centered at this point [11,45].
Both mechanisms give rise to a nonequilibrium steady state,
a finite mean first passage time, depending on the properties
of the resetting times PDF and the underlying random walk
[14]. They also share some statistical properties of certain
stochastic functionals. For example, as we have seen above,
the limiting PDF of T + has the ∪ shape depending on the
value of α. The same happens when the random walker moves
in the presence of a force field [46]. The similarity, however,
does not extend to the W shape or ∩ shape, which do not ap-
pear under a confining potential. Nevertheless, the transition
between the shapes ∪ and W has been already found when
a subdiffusive particle moves in a finite symmetric interval
[24] or when a Brownian particle moves in a heterogeneous
media [47].

VI. CONCLUSIONS

In this work, we have derived the characteristic function
of functionals of random walk when its position is reset to
the origin at random times sampled from a general PDF. We
have derived the temporal scaling dependence of the first two
moments of any stochastic functional of any random walk in
the long-time limit when the resetting PDF has a power-law
tail.

We have shown that the limiting PDF for any stochastic
functional converges to a delta function centered at the mean
value when the resetting PDF has finite moments. This implies
that any functional is ergodic in the presence of exponen-
tial resetting, revealing the role of Poisonian resetting as an
ergodicity-induced mechanism. We have further analyzed the
ergodic properties of observables and have derived an expres-
sion for the EB parameter. In particular, we have computed
the EB parameter for the half occupation time of Brownian
and subdiffusive walkers under resetting times drawn from a
power-law PDF, showing the existence of a transition between
nonergodic and ergodic phases depending on the values of the
exponent of the resetting distribution. In all cases, we have
found that the EB+ parameter is smaller in the presence of
resetting than for the reset-free system, revealing that in this
case resetting also promotes ergodicity. Additionally, we have
seen that for T +, the condition on the resetting PDF can be
relaxed to require only a finite first moment for the limiting
PDF to converge to a delta function, and we expect, though
have not proved, that this relaxation could be extended to other
functionals if the first moment without resetting scales as tμ

with 0 < μ < 1 in the long-time limit.
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We have derived a general expression for the limiting
PDF of any functional of an isotropic random walk under a
power-law resetting PDF if the limiting PDF in absence of
resetting satisfies limt→∞ P(Z, t |x0)0 = f (Z/t )/t . In particu-
lar, we have analyzed the half occupation time statistics. We
have studied the specific cases of Brownian and subdiffusive
underlying random walks and have shown the existence of
different shapes of the limiting PDF: ∪, W, and ∩. The transi-
tion between the three shapes of the limiting PDF reveals the
different behaviors of the system. The ∪ shape is reminiscent
of the reset-free system, and Lévy’s arcsine law, where the
walker spends most of its time either in the positive or the neg-
ative region. On the contrary, a ∩ PDF reveals that resetting
induces the walker to statistically be half of the time on the
positive axis and half on the negative. Unlike the cases where
the walker moves in the presence of a confining potential or
in a heterogeneous medium, if it is subjected to a reset whose
PDF decays as a power law, a transition between the W and
∩ shapes appears. The study of the transition has allowed us
to describe the confining role of the reset, which forces the
walker to frequently revisit a region close to the origin, and
affects the statistical properties of the half-occupation time.
These insights provide a foundation for broader applications.
The general expressions derived in this work can be applied
to other functionals of interest, such as the time-averaged
position or the area under the trajectory.
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APPENDIX A: KUMMER FUNCTION
FOR SMALL ARGUMENT

In this Appendix we illustrate the expansion of the Kum-
mer U function (also known as confluent hypergeometric
function or simply Tricomi’s function) U (a, b, z) is defined
as [36]

U (a, b, z) = �(1 − b)

�(1 + a − b)
M(a, b, z)

+ �(b − 1)

�(a)
z1−bM(a + 1 − b, 2 − b, z), (A1)

where

M(a, b, z) = �(b)

�(a)

∞∑
n=0

�(a + n)

�(b + n)

zn

n!
(A2)

is the Kummer M function. We are interested specifically
in the case a = 1. Inserting the series expansion (A2) into
(A1) we can obtain the series expansion for U (a, b, z). Thus,
depending on the values of b the leading terms in the limit
z � 1 are

U (1, b, z) =

⎧⎪⎪⎨
⎪⎪⎩

1
1−b + z

b(1−b) + · · · , b < 0,

1
1−b − �(b)

1−b z1−b + · · · , 0 < b < 1,

�(b−1)
zb−1 + · · · , b > 1.

(A3)

APPENDIX B: NUMERICAL SIMULATIONS

In this Appendix, we outline the simulation algorithm
which has been used to collect the data. All numerical sim-
ulations are based on Monte Carlo simulations of N particle
trajectories. To simulate a single step of the random walk pro-
cess for a given particle, we compute the time increment τi and
the space increment �i. For the Brownian motion τi = dt and
�i = √

2Ddtξ where dt is a time discretization constant, D
is the diffusion coefficient, and ξ is a normal random variable
N (0, 1). On the other hand, for a CTRW the time and space
increments are given by its Waiting Time PDF and the Jump
Length PDF. In this work, we have worked with a jump length
PDF of 
(x) = δ(x+σ )

2 + δ(x−σ )
2 and a power-law waiting time

PDF of parameter γ : φ(t ) = γ tγ

γ ,0t−1−γ , t > tγ ,0 and 0 oth-

erwise, with tγ ,0 = 1. Then, τi = tγ ,0

(1−u1 )1/γ and �i = sign(u2)σ
where u j are uniform random variables in the interval [0,1],
and σ is a constant space discretization parameter.

Next, we need to compute the time τ r when the reset-
ting processes occur from the resetting PDF ϕ(t ). In this
work we have considered the reset PDF to be EX ϕ(t ) =
e−t/〈t〉R/〈t〉R; PL ϕ(t ) = αtα

0 t−1−α, t > t0 and 0 otherwise,
t0 = 1; ML ϕ(t ) = tα−1τ−αEα,α (−tατ−α ) with Eα,β (·) the
two-parametric ML function, τ = |�(1 − α)|1/α; and LV,
where ϕ(t ) = lα (t ) is the one-sided Lévy stable distribution.
The generation of random numbers from the exponential and
power-law distributions is based on the cumulative probability
function. For details on the ML random number generation,
see Ref. [42] and for one-sided Lévy stable random numbers
see Ref. [44].

To compute the time evolution of a single particle, we
initialize the particle’s position at x = x0 and t = 0 and com-
pute the first resetting time τ r

1 , and perform M1 random walk
steps so that the position x and evolution time t are x =
x0 + ∑M1

i=1 �i and t = ∑M1
i=1 τi until t = τ r

1 is reached. Then
the reset occurs meaning that walker’s position is set to the
initial position x0, a new resetting time τ r

2 is drawn from ϕ(t )
and the process starts anew, where now x = x0 + ∑M2

i=1 �i and
t = ∑M1

i=1 τi + ∑M2
i=1 τi until the next reset time τ r

2 is reached.
This process is repeated until the maximum simulation time
tmax is attained, for which M = ∑

l Ml steps have been per-
formed. We note that we need to ensure that

∑Ml
i=1 τi = τ r

l
so that the l-th reset happens exactly at time τ r

l . Therefore,
we need to check that τl,1 � τ r

l , τl,1 + τl,2 � τ 2
l ,... for all

time increments. When Ml − 1 time increments are computed
so that

∑Ml −1
i=1 τi � τ r

l and the next time increment τMl is
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such that
∑Ml

i=1 τi > τ r
l then time increment used is τMl =

τ r
l − ∑Ml −1

i=1 τi. The same procedures is considered in order
to stop the simulation at exactly t = tmax. To compute the
observables we consider Ta = ∑M

i=1 tiθ (a − |xi|), where is the
total steps done in the simulation; T + = ∑M

i=1 tiθ (xi ) + T0/2
where T0 the time spent by the walker exactly at x = 0; and
A = ∑M

i=1 x2
i ti, where xi is the position of the walker at the

step i. We repeat this procedure over N realizations to compute
the ensemble averages.

APPENDIX C: DERIVATION OF EQ. (38)

We consider the fat-tailed resetting density in Eq. (35) and
use Eq. (36) to have

Lt→s[ϕ(t )〈T +(t |x0)〉0] = αt0
2

e−st0U (1, 2 − α, st0)

and

Lt→s[ϕ
∗(t )〈T +(t |x0)〉0]

= 1 − (1 + st0)e−st0

2s2
+ t2

0

2
e−st0U (1, 3 − α, st0).

Analogously,

Lt→s[ϕ(t )〈T +(t |x0)2〉0] = 3αt2
0

8
e−st0U (1, 3 − α, st0)

and

Lt→s[ϕ
∗(t )〈T +(t |x0)2〉0]

= 3

8

∫ t0

0
e−st t2dt + 3t3

0

8
e−st0U (1, 4 − α, st0).

In the long-time limit we have to consider st0 � 1 in the previ-
ous expressions by using the small argument approximation of
the Kummer U function U (a, b, z). Making use of the results
derived in Appendix A we thus find

Lt→s[ϕ(t )〈T +(t |x0)〉0] ∼ αt0
2

{
�(1−α)
(st0 )1−α , 0 < α < 1

1
α−1 , 1 < α < 2,

Lt→s[ϕ
∗(t )〈T +(t |x0)〉0] ∼ t2

0

2

�(2 − α)

(st0)2−α
, 0 < α < 2,

Lt→s[ϕ(t )〈T +(t |x0)2〉0] ∼ 3αt2
0

8

�(2 − α)

(st0)2−α
, 0 < α < 2,

Lt→s[ϕ
∗(t )〈T +(t |x0)2〉0] ∼ 3t3

0

8

�(3 − α)

(st0)3−α
, 0 < α < 3.

Finally, from Eqs. (14), (15), and the previous results, we
obtain Eq. (38).

APPENDIX D: DERIVATION OF EQ. (51)

To compute the imaginary part in Eq. (50) we set χ−1 = −z − iε into the integrals of Eq. (49) and rewrite them as∫ 1

0
f (u)(χ−1 + u)α−1du =

∫ 1

0
f (u)(ε2 + (u − z)2)

−1+α
2 cos[(−1 + α)θ (z, u, ε)]du

+ i
∫ 1

0
f (u)(ε2 + (u − z)2)

−1+α
2 sin[(−1 + α)θ (z, u, ε)]du

and ∫ 1

0
f (u)(χ−1 + u)αdu =

∫ 1

0
f (u)(ε2 + (u − z)2)

α
2 cos[αθ (z, u, ε)]du + i

∫ 1

0
f (u)(ε2 + (u − z)2)

α
2 sin[αθ (z, u, ε)]du,

where

θ (z, u, ε) = tan−1

( −ε

u − z

)
.

Since the integration variable u ranges from 0 to 1 the angle θ (z, u, ε) may take different values in the limit ε → 0. In particular,
if u ∈ [0, z] then limε→0 θ (z, u, ε) = π while if u ∈ [z, 1] then limε→0 θ (z, u, ε) = 2π . Consequently, the above integrals have
to be split in performing the limit ε → 0. Taking the imaginary part of Eq. (49) using the previous integrals we find

Imgα (z, ε) = A−1+α (zBα − εAα ) − B−1+α (zAα + εBα )

A2
α + B2

α

,

where

Aβ =
∫ 1

0
f (u)[ε2 + (u − z)2]

β

2 cos[βθ (z, y, ε)]du

and

Bβ =
∫ 1

0
f (u)[ε2 + (u − z)2]

β

2 sin[βθ (z, u, ε)]du.
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Next, we perform the limit ε → 0 to the expressions for Aβ and Bβ . We thus find

lim
ε→0

Imgα (z, ε) = z
A−1+αBα − B−1+αAα

A2
α + B2

α

, (D1)

where

Aβ = Cβ (z) cos(βπ ) + Dβ (z) cos(2βπ ),

Bβ = Cβ (z) sin(βπ ) + Dβ (z) sin(2βπ )

and

Cβ (z) =
∫ z

0
f (u)(z − u)βdu = zβ+1

∫ 1

0
f (zv)(1 − v)βdv,

Dβ (z) =
∫ 1

z
f (u)(u − z)βdu, (D2)

where we have introduced the new variable v = u/z. If the underlying random walk is isotropic then f (u) = f (1 − u) and thus
Dβ (z) = Cβ (1 − z). Finally, from Eqs. (D1) and (D2) we readily find Eq. (51).
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