FOOD AUTHENTICITY TESTING WITH NEXT-GENERATION SEQUENCING

Amanda Manolis¹, Nicole Prentice² and Tiina Karla³ ¹Thermo Fisher Scientific, Austin, Texas, USA, ²Thermo Fisher Scientific, Basingstoke, Hampshire, UK, ³Thermo Fisher Scientific, Vantaa, Finland

INTRODUCTION

A study was executed in order to identify meat, fish and plant species in food products. The goal was to verify the compatibility of the methods included in the workflow and the identification of species from several different sample types.

- ✓ End-to-end workflow to identify all plant, fish and meat species within a food sample
- ✓ Samples from several food categories (ready-to-eat meals, fresh products, soups, ingredients, canned foods, etc)
- ✓ Comprehensive list of all species detected

MATERIALS AND METHODS

- ✓ **Homogenization** with Precellys[®] homogenization instrument (Bertin Instruments) to prepare a representative sample for DNA extraction.
- ✓ GMO Extraction kit (Thermo Fisher Scientific) with silica based spin-column technology was used to produce high-quality DNA for library preparation.
- ✓ Libraries for sequencing were prepared with SGS™ All Species Meat, Fish and Plant Analyser kits (Thermo Fisher Scientific). Unique barcodes (i.e. molecular tags) were added to each sample to enable sequencing and analysis of several samples within the same sequencing run.
- ✓ A fully automated **templating** reaction on the lon Chef[™] Food Protection instrument (Thermo Fisher Scientific) was performed to prepare the sample libraries for sequencing on the Ion Chips.
- ✓ **Sequencing** was performed on the Ion GeneStudio[™] S5 Food Protection System (Thermo Fisher Scientific) relying on semi-conductor technology.
- ✓ Sequencing results were mapped against a database of species DNA of meat, fish and plant for data analysis. A comprehensive list of all species detected in a sample was generated by the SGS[™] All Species ID software (Thermo Fisher Scientific).

WORKFLOW

	FISH PRODUCTS		MEAT PRODUCTS			PLANT PRODUCTS		
Product	Detected species		Product	Detected species		Product	Detected species	
Tuna (in water)	Skipiack tuna	\checkmark	Canned pork & beef	Pork, Beef	✓	Bell pepper spice	Pepper	 ✓
Tuna (in oil)	-	x	Canned ham	Pork	 ✓ 	Potato, onion and meat	Onion	*
Mackerel in tomato sauce	Atlantic mackerel	···	Canned chicken	Chicken	✓	Beef soup (Potato, carrot, parsley, swede, leek, rapeseed)	Wild carrot, Wild leek, Rapeseed,	
Canned Sardine	Furopean pilchard	·	Sautéed reindeer	Reindeer	 ✓ 		Parsiey, Carrot, Carrot oli	*
Smoked salmon pizza	Atlantic salmon/Brown trout		Sautéed red deer	Red deer	\checkmark	Salmon soup (Potato, onion, celery, leek, carrot, dill, black pepper)	Onion, Dill/Fennel, Celery, Parsnips	
Fish rolls (roach, pollock)	Common roach, Pollock	· ✓	Vegetables and pork	Pork	✓	Sweet & sour sauce (Iomato, onion, carrot, celery, green/red	Onion, Pepper	*
Crispy Cod files	-	×	Ground pork & beef stick	Pork, Beef		Cinnamon	Cinnamon	
Pollock with almond crust	Alaska pollock	\checkmark	with cheese		 ✓ 	Chives powder	Onion/chives	\checkmark
	Atlantic salmon/Brown trout, Atlantic		Pork & beef dumplings	Pork, Beef	✓	Coriander powder	Coriander	\checkmark
Fish and veggie patties	cod		Smoked and sliced pork,	Pork, Turkey, Chicken		Garlic powder	Garlic	\checkmark
Salmon soup	Rainbow trout. Pollock	\checkmark	turkey and chicken	- •	✓	Grilling spice (Bell & black pepper, coriander, garlic, chili)	Onion, Garlic, Chili/Pepper	*
	Lake whitefish Whitefish		Beef soup	Beet	✓	Pasta sauce (Onion, basil, garlic, parsley, oregano)	Onion/chives, Oat, Wild leek	*
White fish patties	Pollock		Pork liverwurst	Pork	✓	Pesto sauce (Basil, cashew, garlic)	Basil, Cashew	*
		×	Sliced ham	Pork	\checkmark	Oregano	Oregano/Marjoram/Syrian oregano	\checkmark
	Ray-finned fish sn. Common dace, ide,		Bratwurst (pork, beef)	Pork, Beef	\checkmark	Теа	Tea plant	\checkmark
Lake fish patties	Bream, European perch	~	Sausage (Chicken, pork, beef, turkey)	Chicken, Pork, Beef	*	Veggie dumplings (Wheat, potato, onion, dill, black pepper)	Rapeseed, Potato, Rye, Oat, Onion, Barley, Rapeseed, Dill/fennel	*
Fish fingers	Atlantic cod, Haddock	\checkmark	Ox meat chips	Beef	 ✓ 	Lentil and pea sprouts	Peas	*
Smoked sprat	European sprat	\checkmark	Kebab meat	Beef	 ✓ 	Smoked tofu	Soybean	\checkmark
Salmon rolls	Atlantic salmon/Brown trout	\checkmark	Beef and pork patties	Beef, Pork	 ✓ 	Wok veggies (Peas, beans, corn, soy bean, sunflower seeds, kidney	Pea, Soybean, Common bean,	
Rainbow trout strips	Rainbow trout	\checkmark	Ground beef & pork			beans, linseed)	sunflower, garlic, Corn, Parsley	*
Pickled herring	Atlantic herring	\checkmark	patties	Beef, Pork	 ✓ 	Frozen peas, corn, bell pepper	Pea, Pepper, Corn	\checkmark
Salmon loaf	Atlantic salmon/Brown trout, Pollock	\checkmark	Minced chicken	Chicken	 ✓ 	French fries	Potato	\checkmark
Frozen salmon cubes	Pink salmon	\checkmark	Low fat minced beef with	Chielen Deef		TRADEMARK © 2019 Thermo Fisher Scientific Inc. All rights reserved. All	Thermo Fisher	
Frozen Alaska Pollock	Alaska pollock	\checkmark	chicken	Спіскеп, веет	✓	trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. Precellys® is a registered trademark of Bertin Instruments. SGS is a registered trademark of SGS Group Management S. A.	SCIENTIFIC	

CONCLUSIONS

90% of the fish species and 95% of the meat species that were declared as an ingredient were detected. Some plant species were not detected with samples where multiple species were listed in the ingredients, but all declared spice species were detected in spice-type samples. Also, since the products tested are real food products there is no information about the concentration of the species labelled in each product and therefore this can impact on the successful detection of species that can be present at a very low level.

The system is able to analyze several sample types and targets (meat, fish and simple plant samples) within a single sequencing run, enabling shorter processing times with lower cost.

thermoscientific

Application of Next-Generation Sequencing to Food Authenticity Testing - Study of **Adulterated Beef Samples Using Ion GeneStudio S5 Food Protection System**

Sam Watts¹, Steve Garrett², Jani Holopainen³, Nicole Prentice¹ ¹Thermo Fisher Scientific, Basingstoke, UK ²Campden BRI, Chipping Campden, UK ³Thermo Fisher Scientific, Vantaa, Finland

ABSTRACT

Following the UK/EU Horse-meat issues of 2013, where a significant amount of horse DNA was found in a number of processed beef products there has been an increased need for routine non-targeted species detection methods. In recent years Next-Generation Sequencing (NGS) has been promoted as a useful technique to identify species present in samples containing a mixture of species. Very few studies have looked into application of processed meat products where DNA can be highly degraded. This study applies a commercial NGS system to a range of spiked meat product samples processed to industry standard conditions. The samples consisted of lean beef spiked with varying levels of pork and horse muscle was used to prepare raw, burger, canned meat and cottage pie sample types. Multiple DNA extracts were prepared from each sample type and NGS was performed using SGS[™] All Species Meat Analysis kit in conjunction with Ion Chef[™] Food Protection Instrument and Ion GeneStudio[™] S5 Food Protection System. Results will be presented and relevance to food screening will be discussed.

INTRODUCTION

Next Generation Sequencing (NGS) has been introduced in recent years as a very powerful DNA-based method for species identification in food products. However, the use of NGS as a food protection tool requires the development of optimized, fit for purpose, workflow to ensure reliability of results and to maximize the advantages of this high throughput method. To take advantage of the non-targeted and massive sequencing output obtained by NGS a food protection specific end to end workflow has been developed to enable identification of meat, fish and plant species in food products.

In the present study the Thermo Scientific[™] NGS Food Authenticity Workflow (Figure 1) for meat species identification is used for the detection of adulterated beef samples. An application which has particular relevance given the EU horse-meat issues of 2013 in which food advertised at containing beef where found to contain significant amounts of horse meat and to a lesser degree other undeclared meat such as pork. The resulting scandal highlighted a significant breakdown in the traceability of the food supply food chain and called into question brand integrity within the food industry.

MATERIALS AND METHODS

A number of samples of beef with different amounts of horse and pork meat were prepared and then subjected to different processing levels.

Samples were homogenized and a DNA extraction step performed on 200 mg sample. Libraries for sequencing were prepared using SGS[™] All Species Meat Analyser kit (Thermo Fisher Scientific). Unique barcodes (i.e. molecular tags) were added to each sample to enable sequencing and analysis of several samples within the same sequencing run.

Figure 1. Ion Chef[™] Food Protection Instrument, Ion GeneStudio[™] Food Protection NGS System and SGS[™] All Species ID Analyser Kits

A fully automated templating reaction on the Ion Chef Food Protection instrument (Thermo Fisher Scientific) was performed to prepare the sample libraries for sequencing on the Ion Chips. Sequencing was performed on the Ion GeneStudio S5 Food Protection System (Thermo Fisher Scientific) relying on semi-conductor technology. Sequencing results were mapped against a database of species DNA of meat, fish and plant for data analysis. A comprehensive list of all species detected in a sample was generated by the SGS[™] All Species ID software (Thermo Fisher Scientific).

Unprocessed (n=4)	Canned (n=4)	Burger (n=3)	Cottage Pie (n=3)	% Detection
4	4	3	3	100
4	4	3	3	100
2	1	0	2	36
0	0	0	0	0

Table 1. Percentage of horse contamination in mixed beef and horse samples

RESULTS

The output from the Thermo Scientific NGS Food Authenticity Workflow was collated to show whether Horse or Pork meat was detected in the samples at the given contamination levels, as shown in Tables 1 & 2.

CONCLUSIONS

Results suggest that this NGS Food Authenticity Workflow is capable of detecting contamination down to 1% in processed samples although there may be some slight differences in sensitivities between species. The results suggest that this system will not detect contamination at a level of 0.1% so may not be suitable in situations where there is a requirement for low level detection i.e. halal foods where levels down to 0.1% are often tested. Real-time PCR is used in targeted species detection and can detect down to 0.1%.

The method is suitable for screening and as an estimate of potential levels and should not be considered quantitative.

TRADEMARKS

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified.

SGS is a registered trademark of SGS Group Management S. A.

LT2487A September 2019

Pork %	Unprocessed (n=4)	Canned (n=4)	Burger (n=3)	Cottage Pie (n=3)	% Detection
10	4	4	3	3	100
2	4	4	3	3	100
1	4	3	3	3	93
0.1	0	0	0	0	0

Table 2. Percentage of pork contamination in mixed beef and pork samples

Thermo Fisher SCIENTIFIC

thermo scientific

Next Generation Sequencing for Detection of Meat, Fish and Plant Species in Pure and **Mixed Species Samples**

Fish s

Thun.

Gadu

Hippo

Lima

Merlu

Melan Katsu Thunn

Pleur

lolva

Sande Pollac

Amanda Manolis¹, Mario Gadanho¹, Geoffrey Cottenet² ¹Thermo Fisher Scientific, Basingstoke, UK ²Nestlé Research, Lausanne, Switzerland

ABSTRACT

In this study the technical experts from Thermo Fisher Scientific and SGS Molecular supported scientists at Nestle Research in the use of the Thermo Scientific[™] NGS Food Authenticity Workflow (Figure 1) to test for meat, fish and spices/herbs species detection and identification at a variety of different spike levels (1% to 100%) and combinations of species (up to 5 different species combined into a sample).

INTRODUCTION

Food authenticity and fraud are topics of high interest in the food industry and highly controlled by authorities. The complexity of the food supply chain is challenging the abilities of analytical tools used for traceability of ingredients for food production. The most common method to verify species substitution and species identification is Real-Time PCR. However, PCR testing is limited by the number of targets that can be simultaneously identified and differentiated. This can be critical, especially when testing highly processed and complex food that often contain multiple different species.

The introduction of Next Generation Sequencing (NGS) into the food sector revolutionizes food authenticity testing. NGS enables accurate detection and differentiation of thousands of different species in each sample using DNA sequencing that is recognized as the most reliable method for species identification.

Figure 1. Left to right – Ion Chips and consumables, Ion Chef™ Instrument, SGS[™] All Species ID Meat, Fish and Plant Analyser Kits and Ion GeneStudio[™] S5 System

MATERIALS AND METHODS

All samples analyzed in this study were selected to include common species present in commercial food products. DNA was extracted as described below from different materials, including reference samples obtained from samples repositories and proficiency tests and commercial single species food products according to the label.

A total of 148 meat samples, 347 plant samples and 78 fish samples were tested.

Mixtures of species were produced by mixing DNAs to be tested with the NGS workflow proposed. Artificial DNA mixtures contained up to 5 species: Meat DNAs up to 3 species Fish DNAs up to 2 species Plant DNAs up to 5 species

Additionally spiked samples where produced at different levels: Meat spiked samples – 1%, 10% and 50% Fish spiked samples – 1%, 2%, 5% and 10% Plant spiked samples – 1%, 5%, 10% and 20%

MATERIALS AND METHODS

Thermo Scientific NGS Food Authenticity Workflow (See figure 1 for an overview of the NGS Food Authenticity Workflow steps and timings).

Homogenization: To prepare a representative portion of the sample homogenization using the Precellys[™] homogenization instrument (Bertin Technologies) utilizing bead-beating technology was carried out.

DNA Extraction: The GMO Extraction Kit (Thermo Fisher Scientific) with silica based spincolumn technology was used to produce high-quality DNA for library preparation. **DNA library preparation:** DNA libraries were prepared using the SGS All Species Meat, Fish and Plant Analyser Kits (Thermo Fisher Scientific). Regions of interest were amplified using PCR with the DNA extractions of the samples sequencing adapters added. During library preparation unique barcodes (molecular tags) were added to each sample to enable sequencing and analysis of multiple samples in the same sequencing run.

Template preparation and Library pooling: After library preparation, a fully automated templating reaction on the Ion Chef[™] Food Protection Instrument (Thermo Fisher Scientific) was performed to prepare the sample libraries for sequencing on the Ion Chips. Sequencing: Performed on the Ion GeneStudio[™] S5 Food Protection System (Thermo Fisher Scientific) DNA sequences were determined relving on semi-conductor based sequencing technology.

Data analysis: Results were mapped against the SGS® All Species ID Software, a database containing the DNA sequences of many thousands of meat, fish and plant species to provide an identification for all species detected in the samples.

Figure 1. Thermo Scientific NGS Food Authenticity Workflow overview

Table 1. List of meat species tested

Meat species name	Meat ommon name	Meat species name
Ovis aries	Sheep	Tragelaphus strepsice
Capra hircus	Goat	Felix catus
Lepus capensis	Hare	Rattus norvegicus
Oryctolagus_cuniculus	Rabbit	Vulpes vulpes
Macropus rufus	Kangaroo	Alces alces
Capreolus capreolus	Roe Deer	Coturnix japonica
Cervus elaphus	Red Deer	Bubalus bubalis
Rangifer tarandus	Reindeer	Camelus dromedarius
Antidorcas marsupialis	Springbok	Crocodylus niloticus
Equus hemionus	Zebra	Lophura inornata
Lama glama	Lama	Oryx leucoryx
Gallus gallus	Chicken	Alcelaphus buselaphu
Canis familiaris	Dog	Bos grunniens
Bison bison	Bison	Equus asinus
Cervus dama	Fallow Deer	Meles meles
Equus caballus	Horse	Tragelaphus scriptus
Sus scrofa	Pork	Corvus macrorhynche
Bos taurus	Beef	Mustela erminea
Meleagris galopavo	Turkey	Ondatra zibethicus
Cairina moscata	Duck	Anas species
Alopochen aegptiacus	Goose	Crocodylus siamensis
Struthio camelus	Ostrich	Phasianus colchicus
Columba livia	Pigeon	Alectoris chukar
Numida meleagris	Guinea fowl	Aepyceros melampus
Dromaius novaehollandiae	Emu	

	Meat ommon name
os	Kudu
	Cat
	Rat
	Fox
	Elk
	King quail
	Buffalo
	Camel
	Crocodile
	Pheasant
	Oryx gazella
;	Gnu
	Cattle Yak
	Donkey
	Badger
	Antilope
;	Daw
	Weasel
	Muskrat
	Mallard duck
	Crocodile
	Pheasant
	Partridge
	Impala

Table 2. List of fish species tested

pecies name	Fish common name	Fish species name	Fish common name
salar	Atlantic Salmon	Trisopterus luscus	Norway pout
us albacares	Yellowfin tuna	Cynoglossus senegalensis	Witch flounder
s morhua	Atlantic cod	Oncorhynchus chrysogaster	Pink salmon
glossus hippoglossus	Pacific halibut	Lophius piscatorius	Angler
da limanda	Common dab	Oncorhynchus nerka	Sockeye salmon
ccius merluccius	European hake	Pangasianodon hypophthalmus	Silver carp
ogrammus aeglefinus	Haddock	Scomber scombrus	Atlantic mackerel
vonus pelamis	Skipjack tuna	Oncorhynchus gorbuscha	Pink salmon
us alalunga	Albacore	Merluccius hubbsi	Argentine hake
nectes platessa	European plaice	Merluccius productus	North Pacific hake
molva	Ling	Macruronus magellanicus	Patagonian grenadier
r lucioperca	Pike-perch	Merluccius gayi	South Pacific hake
hius pollachius	Pollack	Thunnus obesus	Bigeye tuna

Table 3. List of plant species tested

Plant species name	Plant common name	Plant species name	Plant common name
Origanum species	Origanum	Laurus_nobilis	Sweet bay
Allium schoenoprasum	Wild chives	Manihot_esculenta	Cassava
Allium sativum	Garlic	Mentha spicata	Spearmint
Anethum graveolens	Dill	Myristica fragrans	Nutmeg
Argemone species	Prickly poppy	Ocimum basilicum	Sweet basil
Avena sativa	Oat	Oryza_sativa	Rice
Brassica napus	Rape	Panicum miliaceum	Millet
Capsicum annuum	Cayenne pepper	Papaver somniferum	Opium poppy
Carum carvi	Caraway	Petroselinum crispum	Parsley
Ceratonia siliqua	Carob	Pimpinella anisum	Anis
Conium maculatum	Poison henlock	Piper nigrum	Black pepper
Coriandrum sativum	Coriander	Rosmarinus_officinalis	Rosemary
Crocus sativus	Saffron	Sesamum indicum	Sesame
Cuminum_cyminum	Cumin	Sinapis_alba	White mustard
Curcuma longa	Turmeric	Sorghum_bicolor	Sorghum
Elettaria cardamomum	Cardamom	Thymus_vulgaris	Garden Thyme
Foeniculum vulgare	Sweet fennel	Triticum_aestivum	Wheat
Glycine max	Soybean	Triticum_durum	Durum wheat
Hordeum vulgare	Barley	Zingiber_officinale	Garden Ginger
Juniperus_communis	Juniper		

RESULTS

All pure (100%) meat, plant and fish species were detected and correctly identified.

For the meat samples spiked at 1% two out of 81 meat species were not detected (2.5%). These samples were both cooked beef spiked with 1% pork.

For all meat samples with spike level above 1%, all the species were correctly identified.

Of the ten fish samples spiked with the most common fish species at 1%, all were detected and correctly identified.

170 plant samples were spiked at 1%, 29 of these were not detected (17.1%)

All plant species were detected for the 46 plant samples spiked at 5%.

A few samples didn't originate results since no DNA could be obtained due to high sample processing.

CONCLUSIONS

The Thermo Scientific NGS Food Authenticity Workflow was shown to detect and correctly identify 100% of meat (n=49), fish (n=26) or plant (n= 39) species at a spike level of 5% or higher).

and correctly identified.

For fish samples at a spike level of 1%, 10/10 (100%) of the species were detected and correctly identified.

For plant samples at a spike level of 1%, 143/170 (82.9%) of the species were detected and correctly identified. At a level of 5% all plant species were detected.

Combining up to five species for plant, three species for meat or two species for fish samples had no effect on the detection or correct identification of the species present.

When combined, all targets could be analyzed simultaneously in a single NGS run which reduces NGS costs compared with having to carry out separate runs.

The workflow could differentiate very closely related species with important commercial impact like for Bigeye and Yellowfin tuna that are know to be very difficult to distinguish by DNA sequencing.

The workflow is defined to work with highly processed food (including canned food) by analysing very short DNA fragments. However products originating very low or no DNA can't be analysed.

The identification success of the workflow depends on the number of different species included in the databases. Nevertheless the current databases for meat and fish ID include many thousands of species entries that makes unlikely the absence of and ID result.

For plant ID, the present database is mostly focused on spices, herbs and cereals

food species ID analysis.

TRADEMARKS/LICENSING

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. SGS is a registered trademark of SGS Group Management S. A. Precellys is a registered trademark of Bertin Technologies.

LT2495A September 2019

For meat samples at a spike level of 1%, 79/81 (97.5%) of the species were detected

At spike levels 1-5% all species were detected making the workflow appropriate for

Research and Development SCIENTIFIC

Next Generation Sequencing (NGS) Workflow Applied to the Analysis of **Commercial Spices and Herbs Products**

Amanda Manolis², Sofia Nogueira¹, Franck Pandiani¹ and Cristina Barbosa¹ ¹SGS Molecular, Lisbon, Portugal; ²Thermo Fisher Scientific, Basingstoke, UK

ABSTRACT

The use of DNA-based testing methods is increasing in the food sector. DNA analyses can be a helpful tool for analysis of many food products and can address some of the present concerns about adulteration and authenticity. Several analytical methods have been proposed to answer the specific topic of species composition in foods. Next Generation Sequencing (NGS) has been found to be a suitable tool for food analysis including spices, herbs, seasonings, etc. In the present study, we show how an internal NGS workflow was set up and tested for species composition in real food seasoning samples. NGS was used for testing several commercial samples of different spice and herb mixtures. The results obtained will be discussed based on the labeling of the products relative to the type of sample and species mixtures.

RESULTS

Table 1. List of one-products used in the present study distributed by matrix type

Product	Matrix type	No. of samples
Basil	Dried leaves	2
Turmeric	Powder	4
Cumin	Powder	11
Oregano	Dried leaves	10
	Powder	7
Pepper	Dried seeds	6
Curry powder seasoning	Powder	11
	Powder	7
Pasta seasoning mix	Dried herbs	1
.	Powder	2
ivieat seasoning mix	Dried herbs	5

ANALYSIS OF MIXTURES

Table 4. Number of mixture-based products with an accordant or discordant result between the declared species in the label and the ones identified by NGS

Product	Matrix typa	Accordant	Discordant	Total of	
		result	result	samples	
Curry powder seasoning	Powder	3	8	11	
Pasta seasoning mix	Powder	0	7	7	
	Dried herbs	0	1	1	
Meat seasoning mix	Powder	2	0	2	
	Dried herbs	3	2	5	

All other mixture samples with discordant results showed no identification of declared species or, more species identifications than those declared were assigned (Table 4). In cases where species declared are not identified a possible cause is the inability for this workflow to detect ingredients in trace amounts in the sample. In addition, the diverse ingredients in the mixture sample(s) may have undergone different levels of processing leading to DNA degradation and consequently a lower contribution of viable DNA to the final extract of that particular ingredient. This combination of factors may explain some of the non-detected species identifications. The higher than expected number of species reported can also represent fraudulent practices or may simply be cross contamination during harvest, handling or processing of the product.

INTRODUCTION

Herbs and spices are common and important ingredients in a large variety of foods, beverages, supplements, medicines and cosmetics. Herbs are typically green-leaved plants used either fresh or in dried form and contain pleasant savory or aromatic properties. Spices are the dried parts of plants, often with bright or vibrant colors and usually collected from regions known for warmer climates. Herbs used in culinary or food applications are typically the leaves, flowers, or stems of plants (e.g., oregano and basil), whereas spices are composed of seeds, fruits, roots, barks, etc. (e.g., black pepper, cinnamon, and ginger). Widespread culinary use and the potential health and wellness benefits of herbal products including spices and herbs establish the importance of these ingredients in a major industry with many economic benefits. In 2009, it was estimated that the global market of herbs and spices was worth \$2.97 billion, of which the European Union market accounted for 520 thousand tons with a value of €1.8 billion. Supply and demand is a fundamental economic principle that determines the price of all products. Because of the inherent value in some products, the food industry is very prone to product adulteration, mainly by deliberate substitution or addition of counterfeit food ingredients.

Forty samples that consist of one-ingredient only and 26 samples identified as mixtures were used in the study (Table 1). Powder products are the most common and the most prone to fraudulent practices, thus 63.6% of the samples used in this study were in a powder form. Samples in nonpowder form include dried leaves (12 samples) or dried berries (6 samples) for one-ingredient matrices and dried herbs (6 samples) from samples characterized as mixtures. Thus, all 66 samples were successfully sequenced which demonstrates the suitability of the present DNA extraction method and PCR primer panel to food products and materials containing spice and herbs.

ANALYSIS OF ONE INGREDIENT PRODUCTS

Table 2. Number of one ingredient products with an accordant or discordant result between the declared species in the label and the ones identified by NGS

Dreduct	Declared encoice	Motrix type	Accordant	Discordant	Total of
FIGUUCI	Declared species		result	result	samples

Table 5. List of all species identified in the samples analyzed for each mixture-based product

Product	Identified species	Common name	Source
Curry	Coriandrum sativum	coriander	expected
	Foeniculum vulgare	sweet fennel	expected
	Curcuma longa	turmeric	expected
	Trigonella foenum-graecum	fenugreek	expected
	Allium sativum	garlic	expected
	Sinapis alba/Brassica nigra	white and black mustard	expected
	Capsicum annuum	cayenne pepper	expected
	Anethum graveolens	dill	expected
	Cinnamomum sp.	cinnamon	expected
	Elettaria cardamomum	cardamom	expected
	Zingiber officinale	ginger	expected
	Fallopia convolvulus	black bindweed	field contaminant
	Cuminum cyminum	cumin	contaminant, unknown
	Thymus vulgaris	thyme	contaminant, unknown
	Origanum sp.	oregano/marjoram	contaminant, unknown
	Petroselinum crispum	parsley	contaminant, unknown
	Laurus nobilis	laurel	contaminant, unknown
	Carum carvi	caraway	contaminant, unknown
	Amomum sp./Aframomum sp.	includes true and false cardamom	contaminant, unknown
	Pimpinella anisum	aniseed	contaminant, unknown
	Convolvulus arvensis	field bindweed	field contaminant
	Helminthotheca echioides	bristly oxtongue	field contaminant
	Cuscuta campestris	Tield dodder	
	Pastinaca sativa	parsnip	unknown
	Helianthus annuus	sunflower	unknown
	Centaurea diluta	lesser star-thistle	field contaminant
	Reseda luteola/Reseda lutea	yellow weed	field contaminant
	Amarantnus caudatus		field contaminant
Pasta			
seasoning			expected
mix	Allium cepa	onion	expected
	Origanum sp	oregano/marioram	expected
	Pastinaca sativa	narsnin	expected
	Daucus carota	carrot	expected
	Levisticum officinale		expected
	Thymus vulgaris	thyme	expected
	Piper nigrum	black pepper	expected
	Citrus sp	citrus fruits	expected
	Petroselinum crispum	parslev	expected
	Apium graveolens	celerv	expected
	Coriandrum sativum	coriander	expected
	Cuminum cyminum	cumin	expected
	Origanum vulgare	oregano	expected
	Convolvulus arvensis	field bindweed	field contaminant
	Senna sp.	sennas	field contaminant
	Pimpinella anisum	anise	contaminant, unknown
	Carum carvi	caraway	contaminant, unknown
	Myrtus communis	myrtle	contaminant, unknown
	Sida cordifolia Satureia hortensis	flannel weed	field contaminant
	Ocimum basilicum	basil	contaminant, unknown
	Lactuca sativa	lettuce	contaminant, unknown
	Amaranthus retroflexus	pigweed amaranth	field contaminant
	Corchorus olitorius	jute	field or processing contaminant
Meat	Ocimum basilicum	basil	expected

The analysis of the mixture-based products returned a high number of species as possibilities using our internal method (Table 5) suggesting the present workflow is suitable for both simple and more complex samples containing spices, herbs and similar plant materials. Indeed, NGS demonstrates a great advantage of possible multiple species identification from the same sample in a single instrument run while sequencing several other samples simultaneously.

CONCLUSIONS

- NGS is a promising tool for authenticating many spices and herbs because:
- (1) it is suitable for samples containing highly processed and degraded DNA,
- (2) there is no need of a priori species information,
- (3) is cost-effective when processing numerous samples, and
- (4) it is possible to detect viable DNA in very low amounts.

We have shown that NGS can be successfully used in complex food matrixes containing spices and herbs. Limitations for the current NGS technology applied to plants including spices and herbs are the requirement of simple and fast bioinformatics tools for data analysis and more complete and reliable DNA reference databases. Overcoming these limitations will establish DNA and NGS as reliable

Next-generation sequencing (NGS) is an automated, high-throughput sequencing technology. For DNA sequencing with the aim of species identification and discrimination, NGS technology has been shown to be potent, reliable, and robust with high potential to be successfully applied to food, feed, and related plant materials. The massive data generated by NGS enables the sequencing of heterogeneous samples in a short time and a cost-effective way. Therefore, a single instrument can run multiple species from the same sample or multiple samples can be simultaneously sequenced.

We successfully show here how an internally developed NGS workflow is used to analyze and characterize the composition and authenticity of 66 samples of spices, herbs, seasoning products, and materials.

MATERIALS AND METHODS

To pre-homogenize the samples, each individual package was vigorously shaken for 15–30 s. Powdered samples did not need any homogenization after the shaking step. Dried fruits were homogenized with a blender until a powder was obtained (the entire sample). Dried leaves and herbs were homogenized with cryogrinding in a mill (liquid nitrogen cooled) until a powder was formed (8–10 g sample).

DNA extraction was performed using a commercial kit, NucleoSpin[®] Food kit (Macherey-Nagel), with the following alterations: cetyltrimethylammonium bromide (CTAB) buffer instead of the kit lysis buffer (CF), for polysaccharides elimination; 5 mg of polyvinylpolypyrrolidone (PVPP) added to the lysis step, for polyphenols removal.

The extracted DNA was amplified with the SGS[™] All Species ID Plant DNA Analyser Kit following the instructions. The PCR products were mixed in equal amounts to create the DNA library that was purified with AgentCourt® AMPure® XP beads (Beckman Coulter) according to the manufacturer instructions. The final libraries were quantified with dsDNA BR Assay Kit using Invitrogen[™] Qubit[™] Fluorometer equipment (Thermo Fisher Scientific) and sequenced with Ion Chef[™] Food Protection Instrument and Ion PGM[™] System (Thermo Fisher Scientific) following the instructions.

Basil	Ocimum basilicum	Dried leaves	0	2	2	-
Furmeric	Curcuma longa	Powder	0	4	4	_
Cumin	Cuminum cyminum	Powder	5	6	11	_
Dregano	Oregano vulgare	Dried leaves	0	10	10	_
Pepper Piper nigrun		Powder	4	3	7	
	Piper nigrum	Dried fruits	6	0	6	

It was observed that all dried whole-fruit/berry samples gave an accordant species identification (Table 2). This observation is consistent with the idea of whole-herb/spice matrices are more difficult to adulterate since a visual confirmation would be possible.

The source of additional species identified in discordant results is not clear (Table 3). We cannot say with certainty they are the result of a fraudulent practice. Indeed, crosscontaminations can occur during the harvest, handling or processing of the ingredients and final product. Thus, a deeper look and understanding of the analyses and the species detected will be important to understand the true authenticity of a sample based on NGS test results collected in this manner.

Table 3. List of species identified in more than 50% of the samples with discordant results for each product

Product	Identified species	Common name	Possible source	
Basil	Ocimum basilicum*	basil	expected	
	Convolvulus arvensis	field bindweed	field contaminant	
	Carabarua alitariua	iuto	contaminant,	
	Corchorus olitorius	jute	unknown	
Turmeric	Curcuma longa*	turmeric	expected	
	Trigonella foenum-	formular	contaminant,	
	graecum	тепидгеек	unknown	
	Cuminum cyminum		contaminant,	
		cumin	unknown	
	Capsicum annuum	chili pepper	contaminant,	
			unknown	
	Allium sativum	garlic	contaminant,	
			unknown	
	Coriandrum sativum	coriander	contaminant,	
			unknown	
Cumin	Cuminum cyminum*	cumin	expected	
	Polygonum aviculare	knotgrass	field contaminant	
	Coriandrum sativum	coriander	contaminant,	
			unknown	
	Plantago sp.	plantain	field contaminant	
Oregano	Origanum vulgare*	oregano	expected	
-	Convolvulus arvensis	field bindweed	field contaminant	
	Origanum majorana/	sweet marjoram/	field or processing	
	Origanum onites/	oregano/	contaminant	
	Origanum syriacum	Syrian oregano		
Pepper	Piper nigrum*	black pepper	expected	
	Schinus terebinthifolius	Brazilian peppertree	contaminant,	
			unknown	
	Capsicum annuum	cayenne pepper	contaminant,	
			unknown	

Species declared on the label

technologies for authenticating spices, herbs and their related products.

REFERENCES

Marieschi, M., Torelli, A., Poli, F., Sacchetti, G., & Bruni, R. (2009) J. Agric. Food Chem., 57: 1835–1840.

Black, C., Haughey, S. A., Chevallier, O. P., Galvin-King, P. & Elliott, C. T. (2016) Food Chem., 210: 551-557.

Parveen, I., Gafner, S., Techen, N., Murch, S. J. & Khan I. A. (2016) Planta Med, 82(14): 1225-1235.

Focke F, Haase I, & Fischer M. (2011) J Agric Food Chem, 59(2):513-520.

Reuter J., Spacek D. & Snyder M. (2016) Mol Cell, 58 (4): 586-597.

Barbosa, C., Nogueira, S., Gadanho, M., & Chaves, S. (2019) J. AOAC Int., 102 (2): 369-375.

TRADEMARK STATEMENT

© 2019 Thermo Fisher Scientific Inc. All rights reserved. All trademarks are the property of Thermo Fisher Scientific and its subsidiaries unless otherwise specified. SGS is a registered trademark of SGS Group Management S. A. NucleoSpin® is a registered trademark of Macherey-Nagel. AgentCourt® AMPure® are registered trademarks of Beckman Coulter.

LT2492A

September 2019

The amount of DNA sequences generated by the DNA sequencer was very high (between some hundreds of thousands and millions of sequences). Therefore, the data analysis was performed with an internally developed software which contains a set of algorithms that will group the sequences by similarity and compare them with an internal DNA sequences database.

DNA Preparation	Library Preparation	Template Preparation	Sequencing	Data Analysis
1–16 hours	4 hours	12 hours	<5 hours	~1.5 hours

Figure 1. Overview	of the complete	workflow	applied	in
this study.				

seasoning	Origanum sp.	oregano/marjoram	expected
mix	Artemisia dracunculus	tarragon	expected
	Rosmarinus officinalis	rosemary	expected
	Thymus vulgaris	thyme	expected
	Anthriscus cerefolium	chervil	expected
	Levisticum officinale	lovage	expected
	Allium sativum	garlic	expected
	Capsicum annuum	cayenne pepper	expected
	Coriandrum sativum	coriander	expected
	Citrus sp.	citrus fruits	expected
	Petroselinum crispum	parsley	expected
	Satureja montana	winter savory	field contaminant
	Convolvulus arvensis	field bindweed	field contaminant

Thermo Fisher Scientific • Wade Road • Basingstoke, Hampshire, RG24 8PW, UK • thermofisher.com