

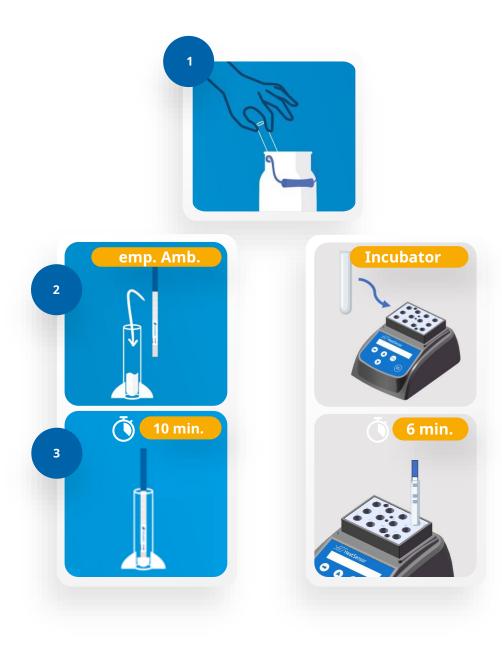
Peace of Mind in Food

• • •

2023 © Unisensor - All rights reserved

Throughout the entiredairy chain, using theadequate testat every moment

Peace of Mind in Food

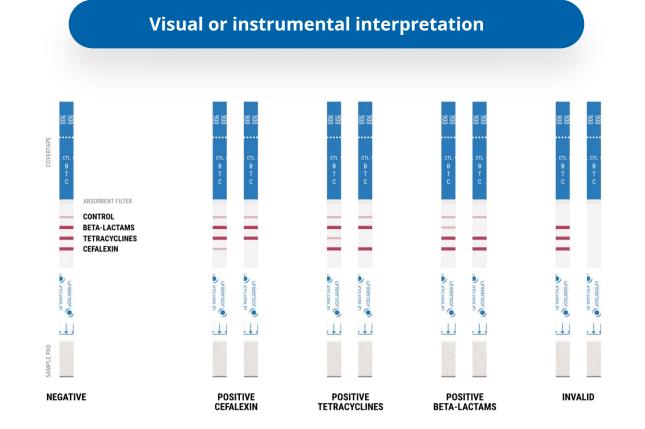

Immerse. Read the result.

• • •

Beta-lactams (including Cephalexin) and Tetracyclines

DipSensor Dip. Read the result.

01 Dip the Dipper into the milk sample.


02 Place the test strip in the Dipper in contact with the milk.

03 Start incubation and read results.

DipSensor

DipSensor Dip. Read the result.

Dip the Dipper into the milk sample.

02 Place the test strip in the Dipper in contact with the milk.

Start incubation and read results.

03

Instrumental and subsequent confirmation data management

• • •

Portability, agility, traceability, connectivity

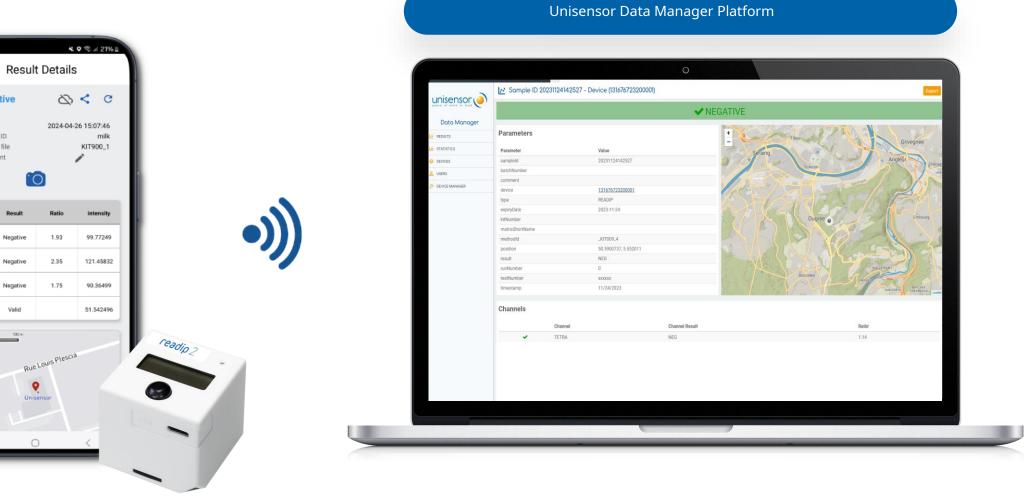
readip Take it wherever you want

readip Take it wherever you want

02

Agility results directly synchronized through the **app**on the smartphone

azability PS and imaging of the test strip.



onnectivity results automatically saved by the Data

Manager

15:08 🖿 🗹

Negative

Date

Line

CEFA

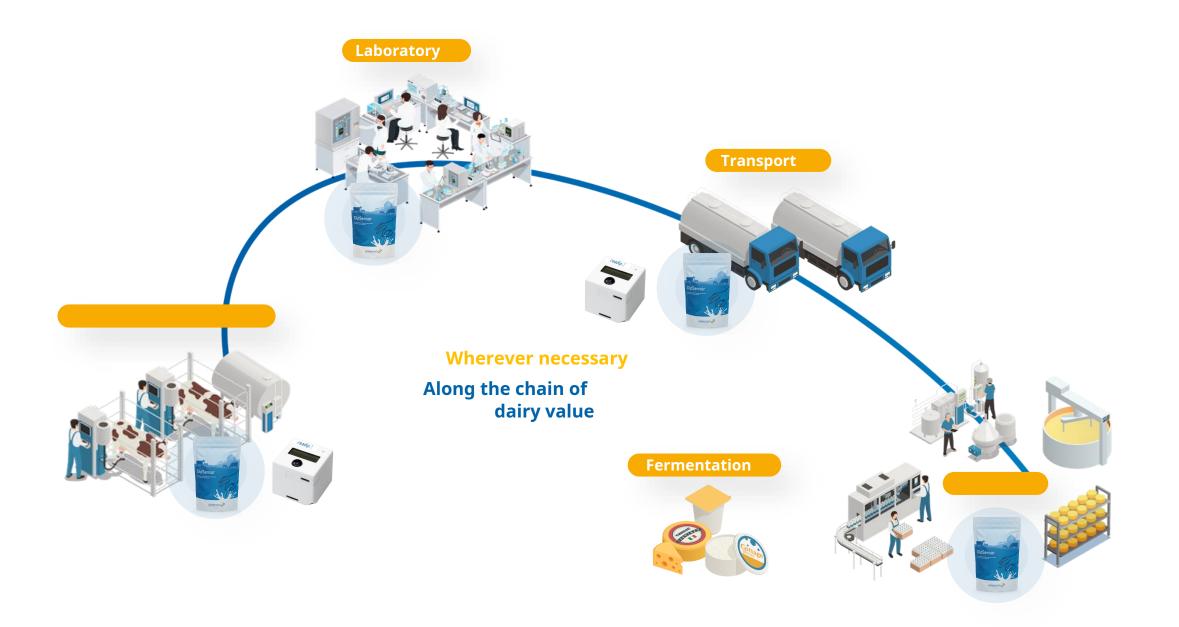
TETRA

BETA

CTRL

50 m

Valid


100 m

Sample ID

Method file

Comment

←

DipSensor y readip

Protect the quality of your milk Solutions adapted for use in the field

Protect the quality of your milk with solutions tailored for use in the field

readip?

It is very important for us to have a fast and reliable service. It gives us security at work and allows us to avoid sanctions.

Advantages of the test: result in 10 min requires power supply.

- Belgian livestock farm

DATE: CONTRACT

Peace of Mind in Food

• • •

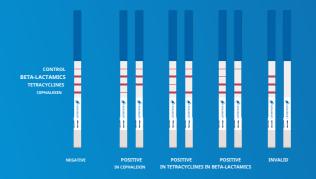
Are you a milk producer?

Manage antibiotic risk with confidence on the farm

Detection of beta-lactams (including cephalexin) and tetracyclines in cow's milk

Easy - Reliable - No equipment needed

Adapted in use on the farm


DipSensor

R

DETECTION OF BETA-LACTAMICS (INCLUDING CEPHALEXIN) AND TETRACYCLINES IN COW'S MILK

VISUAL INTERPRETATION OF RESULTS

CONTACT US

info@unisensor.be

DipSensor® Dip. Read your result!

Manage antibiotic risk in milk with confidence

Easy sampling anywhere Flexible protocols for field and lab use Easy interpretation

Validated by

Have you ever had concerns that your milk might be contaminated?

DipSensor helps you to manage the antibiotic risk at the farm and at the dairy

If the antimicrobial risk within a herd is not evaluated properly, the consequences for farmers can be extremely serious:

- Milk tests positive for antibiotics by the dairy, resulting in penalties
- Contamination of the whole milk collection truck

At the dairy level, residues of antibiotics, combined or not, even if they are below MRLs, can interfere with yogurt and cheese manufacturing processes and disrupt acidification.

To address these challenges, **the DipSensor® system offers two tailored solutions: the KIT900 and the KIT972**, each designed to detect specific families of antibiotics, providing precise risk management.

- KIT900: This kit is specialized in detecting beta-lactams, including cefalexin, and tetracyclines. It is the ideal choice for standard detection needs.
- KIT972: This kit extends detection capabilities by including not only beta-lactams and tetracyclines but also (fluoro)quinolones and sulfonamides, providing a more comprehensive solution for environments with multiple risk factors.

Why DipSensor?

- One-step test: easy sampling, no pipette required
- Works with cow, sheep and goat milk
- Incubate at room temperature or 40°C
- · Read results visually or with an instrument
- Minimize plastic waste



DipSensor®

Farm test

Place the Dipper into the milk

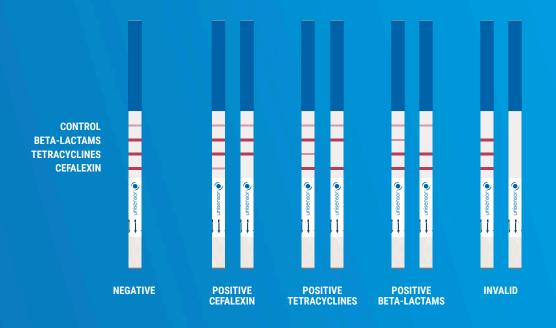
Insert the test strip in the Dipper in contact with the milk


Lab test

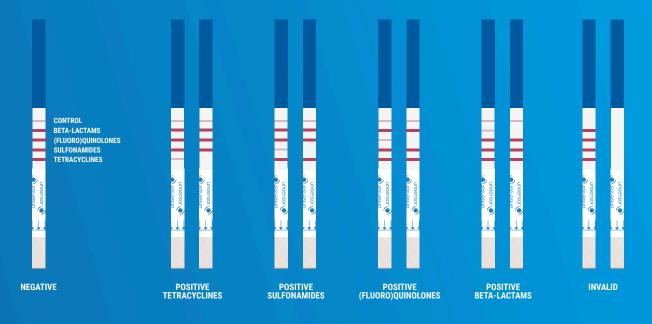
Incubate at room temperature

Place the Dipper into the milk

Insert the test strip in the Dipper in contact with the milk



Incubate at 40°C for faster results



DipSensor®

DipSensor - KIT900

DipSensor BQST- KIT972

The appearance of the lines on the actual test strips may differ from the lines shown here. It is important to compare the intensity of the control line with that of the contaminant line. Please contact Unisensor Sales or Customer Service for more information on visual interpretation.

DipSensor[®] For Farms

☑ No instrument needed!
 ☑ Ambient temperature incubation

☑ 10 minutes to result
 ☑ Easy interpretation

DETECTING BETA-LACTAMS, INCLUDING CEFALEXIN, AND TETRACYCLINES

DETECTING BETA-LACTAMS, TETRACYCLINES, (FLUORO)QUINOLONES AND SULFONAMIDES

KIT972×25 (25 TESTS)

DipSensor® For Labs & Dairies

☑ Get results faster!
☑ 6 or 8 minutes to result

☑ 40°C incubation
 ☑ Minimize plastic waste

Randers Research Institute for Agriculture, Fisheries and Food

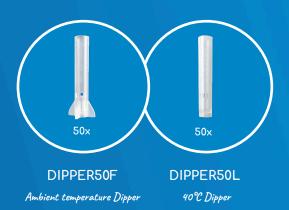
DETECTING BETA-LACTAMS, INCLUDING CEFALEXIN, AND TETRACYCLINES

DETECTING BETA-LACTAMS, TETRACYCLINES, (FLUORO)QUINOLONES AND SULFONAMIDES

INSTRUMENTAL INTERPRETATION

OR

READSENSOR 2 APP088 Desktop reader **READIP 2** APP073 *Pocket reader*


Digital interpretation of the test results with the Readip App

Readip 1 still supports result interpretation, although the new Readip 2 offers enhanced smartphone compatibility. Readip 2 is currently compatible with KIT900 series.

DipSensor®

Accessories

☑ Available separately ☑ Reusable

Sensitivity table

BETA-LACTAMS											
PENICILLINS					CEPHALOSPORINS						
KIT900 KIT972				KIT900		KIT972					
	EU MRL	LOD (ppb)**					EU MRL	LOD (ppb)**			
		Incubation temperature				Incubation temperature					
	(ppb)	RT	40°C	RT	40°C		(ppb)	RT	40°C	RT	40°C
Amoxicillin	4	3 - 4	2 - 3	3 - 4	2 - 3	Cefacetrile	125	15 - 20	10 - 15	15 - 20	15 - 20
Ampicillin	4	3 - 4	2 - 3	3 - 4	2 - 3	Cefalexin	100	40 - 60	80 - 100	600 - 700	500 - 600
Aspoxicillin	-	5 - 10	5 - 10	***	***	Cefalonium	20	2 - 3	1 - 2	2 - 3	1 - 2
Cloxacillin	30	14 - 20	8 - 20	15 - 20	8 - 10	Cefazolin	50	10 - 15	8 - 10	10 - 15	8 - 10
Dicloxacillin	30	8 - 10	5 - 6	8 - 10	5 - 6	Cefoperazone 50		0.5 - 1	0.5 - 1	0.5 - 1	0.5 - 1
Nafcillin	30	100 - 150	100 - 125	100 - 150	70 - 100	Cefquinome	20	19 - 20	16 - 20	19 - 20	17 - 20
Oxacillin	30	14 - 20	8 - 20	15 - 20	8 - 10	Ceftiofur	100*	10 - 15	10 - 15	10 - 15	8 - 10
Penicillin G Benzylpenicillin	4	1 - 2	0.75 - 1	1 - 2	0.75 - 1	Desfuroyl ceftiofur	100*	60 - 70	40 - 60	60 - 70	50 - 60
Phenoxymethylpenicillin	-	2 - 5	2 - 5	***	***	Cefuroxime	-	100 - 300	50 - 200	100 - 120	90 - 100
Piperacillin	-	1 - 4	1 - 4	***	***	Cephapirin	60*	3 - 4	2 - 3	3 - 4	2 - 3
Ticarcillin	-	10 - 30	10 - 30	***	***	Desacetylcephapirin	00.	20 - 25	25 - 35	20 - 25	20 - 25

Sulfaguanidine

TETRACYCLINES							
		KIT900		KIT972			
	EU MRL		LOD (J				
	EU MIRL		Incubation				
	(ppb)	RT	40°C	RT	40°C		
Chlortetracycline	100	35 - 45	25 - 35	35 - 45	35 - 45	Sulfadiazine	
4-Epimer of chlortetracycline	100	40 - 50	30 - 40	***	***	Sulfapyridine	
Oxytetracycline	100	10 - 15	10 - 15	15 - 25	15 - 25	Sulfathiazole	
4-Epimer of oxytetracycline	100	30 - 40	25 - 35	***	***	Sulfamethazine	
Tetracycline	100	30 - 40	25 - 35	30 - 40	30 - 40	Sulfadimethoxine	
4-Epimer of	100	30 - 40	25 - 35	***	***	Sulfamerazine	
tetracycline Doxycycline		10 - 15	10 - 15	15 - 25	15 - 25	Sulfamonomethoxine	
boxyoyonne		10 10	10 10			Sulfaquinoxaline	
						Sulfachloropyridazine	

SULFONAMIDES								
		900	KIT972					
EU MRL	LOD (ppb)**							
	Incubation temperature							
(ppb)	RT	40°C	RT	40°C				
	-		20 - 25	25 - 30				
	-	-	1 - 2	1 - 2				
	-	-	10 - 15	20 - 30				
	-	-	7 - 10	4 - 6				
100*	-	-	30 - 35	35 - 40				
	-	-	8 - 10	6 - 9				
	-	-	20 - 25	25 - 35				
	-	-	30 - 35	40 - 50				
	-	-	20 - 25	40 - 50				
	-	-	20 - 25	45 - 50				

(FLUORO)QUINOLONES							
			KIT972				
	EU MRL	LOD (ppb)**					
		Incubation temperature					
	(ppb)	RT 40°C		RT	40°C		
Norfloxacin	-	-	-	30 - 35	25 - 30		
Enrofloxacin	100*	-	-	30 - 35	30 - 35		
Ciprofloxacin	100	-	-	20 - 25	15 - 20		
Danofloxacin	30	-	-	25 - 30	20 - 25		
Marbofloxacin	75	-	-	35 - 40	30 - 35		
Sarafloxacin	-	-	-	20 - 25	15 - 20		
Flumequine	50	-	-	40 - 45	35 - 40		
Oxolinic acid	-	-	-	140 - 150	130 - 140		
Difloxacin	-	-	-	25 - 30	20 - 25		
Enoxacin	-	-	-	30 - 35	20 - 25		
Lomefloxacin	-		•	40 - 45	30 - 35		

 \star The MRL is applied to the sum of both residues

 $\space{-1mu}{\sp$

*** Compound detected by KIT972 for which LOD has not been yet determined

Unisensor - Who We Are

Our Mission

Bringing smart diagnostic solutions from the laboratory to the field.

We have consistently met field challenges by innovating with advanced, intelligent diagnostic solutions that go beyond traditional laboratory boundaries.

With our unmatched technologies, we don't simply strive for product enhancement, we aspire to revolutionize the contours of our industry.

Our Vision: Peace Of Mind in Food

Consumer confidence is essential for food producers. With our products, we help them guarantee superior quality food that meets consumers' expectations.

Liège Science Park • Rue Louis Plescia, 8 • 4102 Ougrée (Liège) • Belgium Phone +32 4 252 66 02 • info@unisensor.be • www.unisensor.be