From Classical to Quantum: Uniform Continuity Bounds on Entropies in Infinite Dimensions
Seminar author:Michael Jabbour
Event date and time:11/18/2021 04:00:pm
Event location:
Event contact:
We prove a variety of new and refined uniform continuity bounds for entropies of both classical random variables on an infinite state space and of quantum states of infinite-dimensional systems. We obtain the first tight continuity estimate on the Shannon entropy of random variables with a countably infinite alphabet. The proof relies on a new mean-constrained Fano-type inequality and the notion of maximal coupling of random variables. We then employ this classical result to derive the first tight energy-constrained continuity bound for the von Neumann entropy of states of infinite-dimensional quantum systems, when the Hamiltonian is the number operator, which is arguably the most relevant Hamiltonian in the study of infinite-dimensional quantum systems in the context of quantum information theory. The above scheme works only for Shannon- and von Neumann entropies. Hence, to deal with more general entropies, e.g.