Codes of Maximal Distance and Highly Entangled Subspaces
Seminar author:Felix Huber
Event date and time:12/04/2018 03:00:pm
Event location:GIQ Seminar Room (C5/262)
Event contact:Felix.Huber@icfo.eu
We present new bounds on the existence of quantum maximum distance separable
codes (QMDS): the length n of all non-trivial QMDS codes with local dimension
D and distance d is bounded by n ≤ D^2 + d − 2. We obtain their weight
distribution by investigating families of QMDS codes, and present additional
bounds that arise from Rains’ shadow inequalities. Our main result can be seen
as a generalization of bounds that are known for the two special cases of
stabilizer QMDS codes and absolutely maximally entangled states, and confirms
the quantum MDS conjecture in the special case of distance-three codes.
Because the existence of QMDS codes is directly linked to that of highly
entangled subspaces (in which every vector has uniform r-body marginals) of
maximal dimension, our methods directly carry over to address questions in
multipartite entanglement.